

@	ı
	ı
	ı
	ı
	ı
	ı
()	ı
-	ı
	ı
(1)	ı
\sim	ı
	ı
	ı
	ı
\wedge	ı
4	ı

Le choix de la phase	D.2 - D.3
•	D.2 - D.3 D.4 - D.12
Interchim - UptiBond Présentation UptiBond Premium	D.4 - D.12
UB1P, UB5P	D.5 - D.6
UB17P, UB624P	D.7
UB624, UB1301	D.8
UB1701	D.9
UB17, UB210, UB225, UBAmines	D.10
UBWAX, WAX-HT	D.11
UBFFAP	D.12
Agilent JW	D.13 - D.65
Ultra Inertes - Caractéristiques	D.13
DB-1ms UI, HP-1ms UI	D.14
DB-5ms UI, HP-5ms UI	D.15
DB-35ms UI, DB-624ms UI	D.16
DB-624 UI USP467	D.17
DB-UI 8270D	D.18
DB-WAX UI	D.19
DB-FAT WAX UI, DB-BAC UI	D.20
DB-1ms, HP-1ms, CP-Sil 5 CB ms	D.21
VF-1ms, DB-5ms HP-5ms, CP-Sil 8 CB ms	D.22 D.23
VF-5ms, DB-XLB	D.23 D.24
VF-Vms, DB-XLB VF-Xms, DB-35ms	D.24 D.25
VF-35ms, DB-17ms	D.26
VF-17ms, VF-23ms	D.27
VF-200ms, DB-225ms	D.28
VF-WAX ms, VF-624ms	D.29
VF-1301ms, VF-1701ms	D.30
DB-1	D.31
HP-1	D.32
CP-Sil 5 CB	D.33
DB-5	D.34
HP-5	D.35
CP-Sil 8 CB	D.36
CP-Sil 13 CB, DB-35, HP-35	D.37
DB-17, HP-50+	D.38
CP-Sil 24 CB, DB-23	D.39
DB-200, DB-210, DB-225 CP-Sil 43 CB, DB-1301, CP-1301	D.40 D.41
DB-1701	D.41 D.42
CP-Sil 19 CB	D.42
DB-WAX, HP-INNOWAX I	D.44
DB-HeavyWAX, DB-WAXetr	D.45
CP-WAX 52 CB, DB-FFAP	D.46
HP-FFAP, CP-WAX 58 FFAP CB	D.47
Carbowax 20M & HP-20M	D.48
DB-1HT, DB-5HT, DB-17HT, VF-5HT, VF-5HT Ultimétal	D.49

D.2 - D.126

Colonnes Capillaires

Sommaire Analyse GC

Analyses pétrolières et pétrochimiques	D.50	SGE - Trajan	D.97 - D.105
Analyses Biodiesel/biocarburants et amines	D.51	Répartition des phases SGE	D.97
Analyses Pesticides et PAH	D.52	BP1, BPX1, SolGel-1ms	D.98
Analyses Semivolatils, Dioxine et PCB	D.53	BP5, BPX5	D.99
Anaylses Volatils (Méthodes 624)	D.54	BP5ms, HT5	D.100
Analyses Volatils et MTBE	D.55	HT8, HT8 PCB, BPX35, BPX608	D.101
Anayses Agroalimentaire et Parfumerie	D.56 - D.57	BPX50, BPX70, BPX90	D.102
Analyses Alcools	D.58	BP20, SolGel-WAX	D.103
Analyses Alcools dans le sang, solvants résiduels	D.59	SolGel BP21, SolGel BP10, BPX-Volatils	D.104
CP-PoraBOND Q, CP-PoraBOND U, CP-PoraPLOT Q, CP-Pora	PLOT Q-HT D.60	BP624, autres SGE spécifiques (D20, DXN, Volatiles, I	Dioxin-I & I)I D.105
HP-PLOT Q + GSQ, CP-PoraPLOT U, CP-PoraPLOT S	D.61	Thermo Scientific	D.106 - D.124
HP-PLOT U, HP-PLOT Al2O3 KCI & GS-Alumine KCI	D.62	TG-1ms, TG-XLBms	D.106
CP-Al2O3/KCI & CP-Al2O3/Na2SO4, HP- PLOT Al2O3S	D.63	TG-SQC, TG-5ms	D.107
GS-Alumina, HP-PLOT Al2O3M, CP-Silica PLOT, HP-PLOT	Molesieve D.64	TG-5ms Amine, TG-5Silms	D.108
CP-Molesieve 5A	D.65	TG-5HT, TG-35ms	D.109
GL Sciences	D.66 - D.70	TG-1301ms, TG-624, TG-624Silms	D.110
InertCap Pesticides, InertCap 25	D.66	TG-VRX, TG-Vms, TG-1701ms	D.111
InertCap Pure-WAX	D.67	TG-17ms, TG-17Silms, TG-225ms	D.112
InertCap WAX-HT, InertCap pour amines	D.68	TG-200ms, TG-Waxms	D.113
InertCap Aquatic	D.69	TG-Waxms A, TG-Waxms B, 8ms, Dioxin, Dioxin 5ms	D.114
InertCap Aquatic-2	D.03 D.70	TG-OCP I&II, TG-OPP I&II, TG-ALC III	D.115
• •	D.71 - D.77	TR-1, TR-1ms	D.116
Ohio Valley		TR-5, TR-5ms	D.117
0V-1	D.71	TR-5HT, TR-35ms, TR-1701	D.118
OV-1ms, OV-5	D.72	TR-50ms, TR-225, TR-WAX	D.119
OV-5ms, OV-20	D.73	TR-WAX ms, TR-FFAP, TR-SIMDIST	D.120
OV-35, OV-1301	D.74	TR-V1, TR-FAME, TR méthodes EPA, TR-DIOXIN 5ms	s D.121
OV-624, OV-1701	D.75	TR-PCB 8ms, TR-BioDiesel, TR-DOA5ms, TR-DOA35	ms,
OV-225, Carbowax 20M	D.76	TR-Pesticide I, II, III, IV	D.122
OV-351, OV-17	D.77	UltraFast	D.123
Perkin Elmer	D.78 - D.85	Trace PLOT-Bond, pièges à particules	D.124
Elite-1, Elite-1ht	D.78	Valco - VICI	D.125 - D.126
Elite-5, Elite-5ht	D.79	VB-Fluoro, VB-1, VB-5	D.125
Elite-5ms, Elite-17, Elite-17ht, Elite-17ms	D.80	VB35, VB-624, VB-1701, VB-WAX, Valco PLOT	D.126
Elite-35, Elite-35ms, Elite-200	D.81		
Elite-225, Elite-502.2, Elite-608, Elite-624	D.82		D 107
Elite-1301, Elite-1701	D.83	Colonnes Remplies	D.127
Elite-WAX, Elite-BAC, Elite-Pesticides	D.84	Interchim - Uptipacked	D.127
Elite-PLOT, Velocity	D.85		
Quadrex	D.86		D 100 D 101
Restek	D.87 - D.96	Colonnes Chirales Cyclodextrines	D.128 - D.131
Rxi-1ms, Rxi-5ms	D.87	Cyclodex B- Cyclosil B	D.128
Rxi-5Sil ms, Rxi-XLB	D.88	HP- Chiral B, CP ChirasilVAL, Chirasil-Dex CB	S, CYDEX-B D.129
Rxi-35Sil ms, Rxi-17Sil ms, Rxi-PAH, Rxi-624Sil ms	D.89	Chiramix	D.130
Rxi-1HT,Rxi-5HT	D.90		
Rtx-1	D.91	Restek	D.131
DI E DI E	D ^^		

D.92

D.93

D.94 D.95

D.96

Rtx-5, Rtx-5ms

Rtx-200, Rtx-200ms

Rtx-1301, Rtx-1701

Rtx-225, Rtx-Wax

Stabilwax, Stabilwaxms

La phase qui convient

Applications	Composition	Polarité	Température a, b, c iso/prog (°C)	Phase de polarité similaire
Phases greffées Amines, hydrocarbures, pesticides, biphényles, polychlorés, phénols, composés soufrés	Diméthylpolysiloxane	Apolaire	a:-60 à 325/350 b:-60 à 300/320 c:-60 à 260/280	UptiBond 1 Premium DB-1, BP-1, SPB-1, DB1MS, DB1MS-UI, CP-Sil 5, 007-1, Rtx-1, OV-1, SE-30
Alcaloïdes, drogues, esters méthyliques d'acides gras, composés halogénés	Copolymère de diphényle (5%)- diméthylpolysiloxane (95%) Copolymère de diphényle (5%)- diméthylarylènesiloxane (95%)	Apolaire	a:-60 à 325/350 b:-60 à 300/320 c:-60 à 260/280	UptiBond 5 Premium DB-5, DB-5MS, DB-5ht, DB-5MSUI, DB-5.625, SPB-5, XTI-5, Mtx-5, SPB-5, CP-Sil 8CB/MS, 007-5, OV-5, SE-54, SE-52, Rtx-5, Rtx-5MS, PTE-5, MDN-5/S, BPX-5, BP-5
Alcools, PCB, pesticides, acides organiques volatils	Copolymère de cyanopropylphényle (6%)-diméthylsiloxane (94%)	Faible à moyenne	a : -20 à 280/300 b : -20 à 260/280	UptiBond 624 Premium, UptiBond 624, UptiBond 1301 DB-1301, DB-624, Rtx-1301, Rtx-624, Mtx-1301, Mtx-624, CP-624
Amines, PCB, pesticides, médicaments	Copolymère de diphényle (35%)- diméthylsiloxane (65%) Copolymère de diphényle (35%) diméthyl arylene siloxane (65%)	Intermédiaire	a: -40 à 300/320 b: -40 à 280/300 a: -40 à 340/360 b: -40 à 320/340	HP-35, DB-35, Rtx-35, SPB-35, AT-35, Sup-Herb, HP-35MS
Herbicides, PCB, pesticides, sucres TMS	Copolymère de cyanopropylphényle (14%)-diméthylsiloxane (86%)	Intermédiaire	a : -20 à 280/300 b : -20 à 260/280	UptiBond 1701 DB-1701, Rtx-1701, SPB-7, SPB-1701, BP-10, OV-1701, 007-1701, CP-Sil 19 CB
Drogues, glycols, pesticides, stéroïdes	Copolymère de diphényle (50%)- diméthylsiloxane (50%)	Intermédiaire	a : 40 à 280/300 b : 40 à 260/280	UptiBond 17 DB-17, DB-17ht, 007-17, OV-17, SPB-50, SP2250, Rtx-50, CP-Sil 19, CP-RSL-300, BPX-200, Sil24CB
Composés polaires ou riches en électrons. Ex. : aldehydes, pesticides organochlorés, ou organophospho- rés, herbicides	Copolymère de trifluoropropyl (50%)- méthylsiloxane (50%)	Polaire	a : -45 à 240/260 b : -45 à 220/240	UptiBond 210 DB-210, Rtx-200
Esters méthyliques d'acides gras, acétates d'alditol, stérols neutres	Copolymère de cyanopropylphényle (50%)-diméthylsiloxane (50%)	Intermédiaire à polaire	a : 40 à 220/240 b : 40 à 200/220	UptiBond 225 DB-225, SP-2330, SPB-225 CP-Sil 43CB, OV-225, RSL-500, Rtx-225, BP- 225, 007-225
Acides, alcools, aldéhydes, acrylates, nitriles	Polyéthylèneglycol - modifié par TPA	Polaire	a: 60 à 240/250 b: 60 à 230/240	UptiBond FFAP OV-351, SP-1000, DB FFAP, Stabilwax- DA, 007-FFAP, ketones, Nukol
Alcools, acides libres, aromatiques, huiles essentielles	Polyéthylèneglycol greffable INNOphase™	Polaire	a : 40 à 260/270 b : 40 à 240/250	Carbowax 20M, BP-20, 007-CW, CP- Wax 52CBI, Stabilwax, Supelcowax-10, DB-WAXetr
Solvants, glycols, alcools	Polyéthylèneglycol Greffé/réticulé	Polaire	a : 20 à 250/260 b : 20 à 230/240	Uptibond WAX DB-Wax, Rt-WAX Carbowax 20 M
Autres composés basiques et amines	Polyéthylèneglycol Greffé/réticulé modifié pour l'anlyse des composés basiques	Polaire	a : 40 à 240/260 b : 40 à 220/240	UptiBond Amine CAM, Carbowax Amine, Stabilwax-DB, CP-51 WAX pour amines et diamines
Isomères cis et trans esters méthyliques d'acides gras, dioxines	Phase Cyanopropyl méthylpolysiloxane	Polaire	a : 40 à 250/260 b : 40 à 230/240	DB-23, SP-2330/2340, 2380, 2560, Rtx-2330, 007-23
Composés chiraux dans huiles essentielles et parfums, Isomères optiques	beta-cyclodextrine perméthylée dans un polymère phénilique	Chirale	a : 30 à 240/250	CP chiralsil Dex CB, CP-cyclodex- trin-2,3,6, M19, Rt-DEXm, DEX110/120

a : d.i. < 0,53 mm, film mince ou d'épaisseur courante - b : d.i. 0,53 mm - c : film 2 μ m

Applications	Composition	Polarité	Température a, b, c iso/prog (°C)	Phase de polarité similaire
Colonnes PLOT Hydrocarbures C ₁ -C ₆ dans le gaz naturel, le gaz de raffinerie, le gaz com- bustible, le gaz synthétique, les diènes	Oxyde d'aluminium		jusqu'à 200	GS-Alumina Al ₂ O ₃ /KCI, Al ₂ O ₃ / Na ₂ SO ₄ , AluminaPlot, RT-Alumina Plot
Gaz rares et permanents	Tamis moléculaire Zéolite 5A		jusqu'à 350	GS-Molesieve, Molesieve 5Å, RT-Molesieve 13X
Colonnes PLOT Hydrocarbures, y compris les isomères le CO ₂ , l'air/CO, l'eau, les solvants po- laires, le méthane, les composés soufrés	Polystyrène-divinylbenzène (DVB)		a et b : jusqu'à 270/290	PoraPLOT Q/S, GS-Q, all C1-C3 Rt-Q PLOT, Supel-Q PLOT
Hydrocarbures C1 à C7	Divinylbenzène éthylèneglycol		Jusqu'à 190	PoraPLOT U
Phases spéciales - environnementales Composés organiques volatils		Faible à moyenne	- 60 à 280	502.2, 524.2, 601, 602, 8024, 8260
Composés organiques volatils	Copolymère de cyanopropyl- phényle (6%) diméthylsiloxane (94%) testé avec analyte	Faible à moyenne	- 20 à 260/270	624, 601, 602, 603, 501, 503.1, 524.2, 8020, 8260 et USP 467
Biphényls polychlorés, pesticides chlorés, herbicides		Faible à moyenne	30 à 260/280	608, 508, 8080, 8081, 8150, 8151, 505
Pesticides, biphényls polychlorés	Copolymère de cyanopropyl- phényle (14%), diméthylsiloxane (86%) testé avec analyte	Faible à moyenne	a : - 20 à 280/300 b : - 20 à 260/280	608, 508, 8080, 8081, Herbicides 505, 515, 8150
Pesticides, biphényls polychlorés, herbicides	Copolymère de diphényle (5%) diméthylsiloxane (95%) testé avec analyte	Faible à moyenne	- 60 à 325	608, 508, 8080, 8081, 505,
Composés semi-volatils	Copolymère de diphényle (5%) diméthylpolysiloxane (95%)	Apolaire	a:-60 à 325/350 b:-60 à 300/320	625, 525, 8250, 8270
Autres phases spéciales Solvants résiduels	Copolymère de cyanopropyl- phényle (6%) diméthylsiloxane (94%) testé avec analyte		- 20 à 260/270	
Alcools dans le sang			Jusqu'à 300	

a : d.i. < 0,53 mm, film mince ou d'épaisseur courante - b : d.i. 0,53 mm - c : film 2 μ m

Toutes les marques appartiennent à leurs propriétaires respectifs.

Produits Liés

 $\mathbf{UptiSep^{TM}}: des\ septa\ r\'evolutionnaires\ !$

Les pics fantômes peuvent être causés par des débris de septum dans l'injecteur. Pour éviter cela, utilisez les septa UptiSep.

- Faible bleeding
- Durée de vie 5 fois supérieure
- Testés sur 1000 injections
- Pré-conditionnés et prêts à l'emploi
- Teneur minimum en siloxanes

Compatibles avec les passeurs :

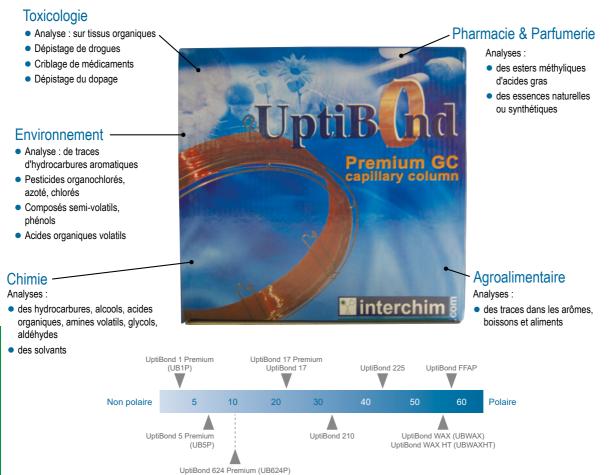
Agilent 6890, 5890, 4890, 6850, Perkin Elmer Sigma 900, 990, 3920, 8300, 8400, 8500, Autosystem et Clarus 500, Varian 1075, 1077, 1078, 1079, SPI 1093, 1094

Description	Réf.	Qté	
Septa UptiSep™ 11 mm	DS7121	25 u	

Développer des savoir-faire, des technologies innovantes pour créer et fabriquer les outils et produits que vous utilisez aujourd'hui.

Ce but est celui de nos équipes scientifiques depuis plus de trois décennies.

Les Colonnes capillaires multi-applications UptiBond sont issues d'une rencontre entre les spécialistes GC Interchim et une équipe de chercheurs d'un des acteurs reconnu en chromatographie gazeuse.


Les colonnes UptiBond sont fabriquées suivant les spécifications définies par nos équipes.

- Validation du tube capillaire rigoureuse, notamment concernant son degré de désactivation
- Technologie propriétaire de greffage
- Contrôle de la régularité du dépôt du film et de son épaisseur sur toute la longueur

Les caractéristiques définies pour nos colonnes UptiBond sont validées :

- Suivi analytique en cours de fabrication
- Test analytique en fin de cycle
- Validation des constantes

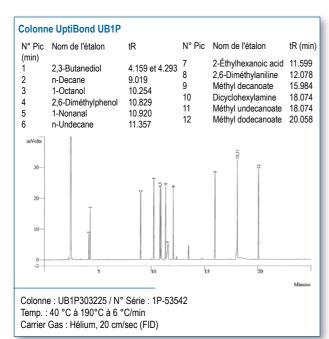
Ces procédures strictes sont la garantie de la parfaite reproductibilité de lot à lot de nos colonnes UptiBond. A votre demande, nos laboratoires travailleront sur vos besoins spécifiques et vous proposeront les services qui répondent à votre problématique.

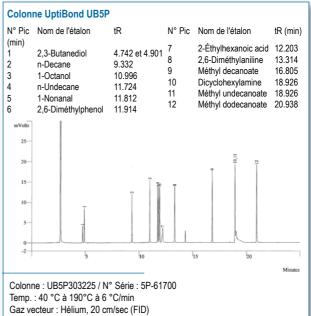
Uptibond 624 (UB624)

UptiB ind

Colonnes UB1P

100 % diméthylpolysiloxane - USP : G2


 $\textcolor{red}{\textbf{Phases similaires}}: HP\text{-1}, DB\text{-1}, HP\text{-1}ms, DB\text{-1}ms, Rtx\text{-1}, \ Rtx\text{-}Sil1ms, \ VF\text{-1}ms, \\ \textcolor{red}{\textbf{Phases similaires}}: HP\text{-1}, DB\text{-1}, HP\text{-1}ms, DB\text{-1}ms, Rtx\text{-1}, \ Rtx\text{-}Sil1ms, \ VF\text{-1}ms, \\ \textcolor{red}{\textbf{Phases similaires}}: HP\text{-1}, DB\text{-1}, HP\text{-1}ms, DB\text{-1}ms, Rtx\text{-1}, \ Rtx\text{-}Sil1ms, \ VF\text{-1}ms, \\ \textcolor{red}{\textbf{Phases similaires}}: HP\text{-1}, DB\text{-1}, HP\text{-1}ms, DB\text{-1}ms, Rtx\text{-1}, \ Rtx\text{-}Sil1ms, \ VF\text{-1}ms, \\ \textcolor{red}{\textbf{Phases similaires}}: HP\text{-1}, DB\text{-1}, HP\text{-1}ms, DB\text{-1}ms, Rtx\text{-1}, \ Rtx\text{-}Sil1ms, \ VF\text{-1}ms, \\ \textcolor{red}{\textbf{Phases similaires}}: HP\text{-1}, DB\text{-1}, HP\text{-1}ms, DB\text{-1}ms, Rtx\text{-1}, \ Rtx\text{-}Sil1ms, \ VF\text{-1}ms, \\ \textcolor{red}{\textbf{Phase similaires}}: HP\text{-1}, DB\text{-1}, HP\text{-1}ms, DB\text{-1}ms, Rtx\text{-1}, \ Rtx\text{-}Sil1ms, \ VF\text{-1}ms, \\ \textcolor{red}{\textbf{Phase similaires}}: HP\text{-1}, DB\text{-1}, HP\text{-1}ms, DB\text{-1}ms, Rtx\text{-1}, \ Rtx\text{-}Sil1ms, \ Rtx\text{-}$


CPsil5CB, Equity-1, MDN-1, AT-1, AT-1ms...

Applications: Hydrocarbures, pesticides, phénols, amines, huiles essentielles,

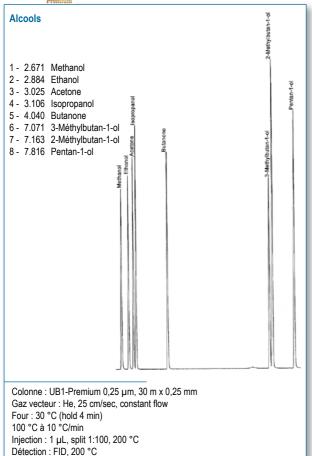
gaz (raffinerie), MTBE, composés oxygénés, soufrés, arômes.

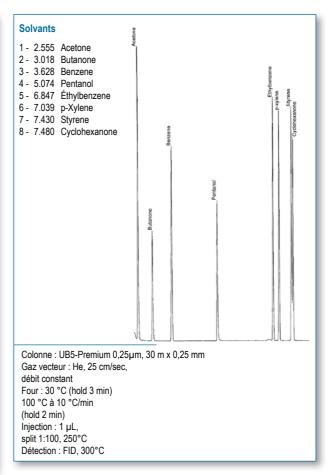
Ø int.	Film	θ limite °C	15 m	20 m	30 m	60 m
0,18 mm	0,18 µm	325/350		UB1P201818		
0,25 mm	0,25 µm	325/350	UB1P152525		UB1P302525	UB1P602525
0,32 mm	0,25µm	325/350	UB1P153225		UB1P303225	UB1P603225

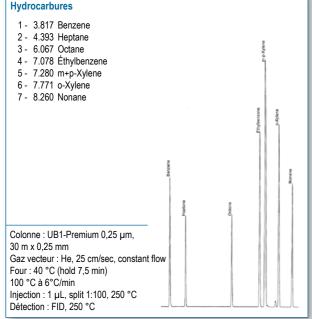
Colonnes UB5P

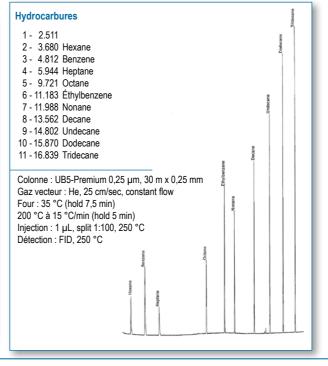
5 % Phényl 95 % Diméthylpolysiloxane - USP : G27

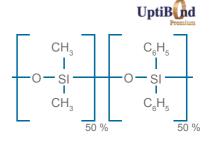
 ${\color{red}\textbf{Phases similaires}: DB-5,\ DB-5ms,\ HP-5,\ HP-5ms,\ Rtx-5,\ Rtx-5\ ms,\ Rtx-5SilMS,}$


SPB-5, BP-5, Ov5, 2B-5.


Applications: Drogues, esters méthyliques d'acides gras (FAME), composés halogénés, semi-volatils, pesticides...


CH ₃	CH ₃	CH ₃
O-SI-((CH ₃		O SI CH ₃
	m	


Ø int.	Film	θ limite °C	10 m	15 m	20 m	30 m	60 m
0,18 mm	0,18 µm				UB5P201818		
0,25 mm	0,10 µm	325/350		UB5P152510		UB5P302510	UB5P602510
	0,25 µm	325/350		UB5P152525		UB5P302525	UB5P602525
	0,50 µm	325/350		UB5P152550		UB5P302550	
	1,00 µm	325/350				UB5P3025100	
0,32 mm	0,10 µm	325/350		UB5P153210		UB5P303210	UB5P603210
	0,25 µm	325/350		UB5P153225		UB5P303225	UB5P603225
	0,50 µm	325/350		UB5P153250		UB5P303250	


Colonnes UB17P

50 % Diphényl - 50 % Diméthylpolysiloxane - USP : G3

Phases similaires: DB-17, DB-17ms, RTX-50, ZB-50, BPX50, SPB17....

Applications: Drogues, glycols, pesticides, stéroïdes.

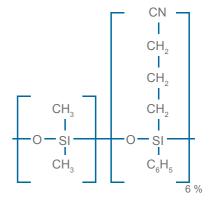
Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,25 µm	325/350	UB17P152525	UB17P302525	UB17P602525
0,32 mm	0,25 µm	325/350	UB17P153225	UB17P303225	UB17P603225

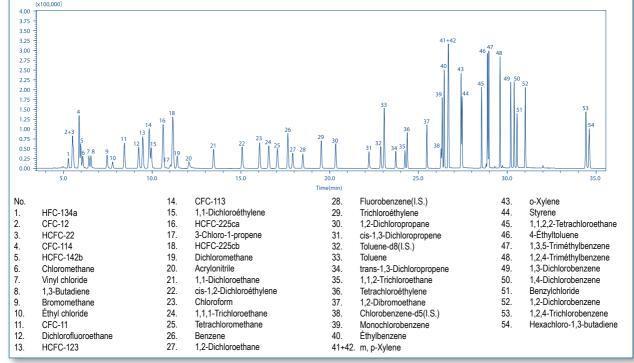
Colonnes UB624P

6 % Cyanopropylphényl - 94 % Diméthylpolysiloxane - USP : G3

Phases similaires: DB-624UI, DB-624MS, VF-624MS, Rxi-624, 007-624, ZB-624....

Applications: Solvants résiduels, composés organiques volatils (VOC), alcools, composés

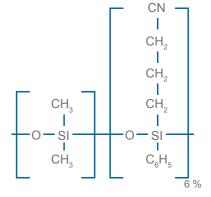

oxygénés.


Méthodes EPA 501.3; 502.2; 524.2; 601; 602; 603; 624; 1624; 8010; 8015; 8021;

8030/8031:8240:8260

Colonne UptiBond UB624P

Ø int.	Film	θ limite °C	20 m	30 m	60 m
0,18 mm	1,00 µm	260	UB624P2018100		
0,25 mm	1,40 µm	260		UB624P3025140	UB624P6025140
0,32 mm	1,80 µm	260		UB624P3032180	UB624P6032180
0,53 mm	3,00 µm	260		UB624P3053300	



Colonnes UB624

6 % Cyanopropylphényl - 94 % Diméthylpolysiloxane - USP : G3

Phases similaires: DB-624, ov-624, HPVOC, CP-Select 624CB, RTx-Volatils, BP624, ZB-624...

Applications: Solvants résiduels, composés organiques volatils (VOC), alcools, composés oxygénés.

Ø int.	Film	θ limite °C	30 m	60 m	75 m
0,25 mm	1,40 µm	260/260	UB6243025140	UB6246025140	
0,32 mm	1,80 µm	260/260	UB6243032180	UB6246032180	
	3,00 µm	260/260	UB6243032300		
0,53 mm	3,00 µm	260/260	UB6243053300		UB6247553300

Colonnes UB1301

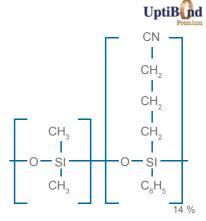
6% Cyanopropylphényl - 94% Diméthylpolysiloxane - USP: G43

Phases similaires: DB-1301, Rtx-1301, PE-1301, CPSil-130...

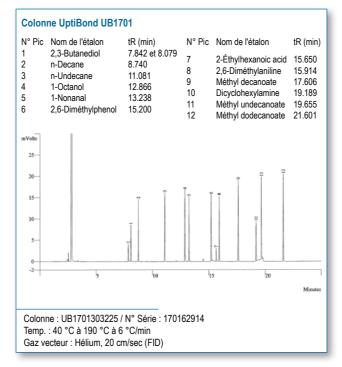
Applications: PCB, alcools, pesticides, acides organiques volatils.

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,25 µm	280/300	UB1301152525	UB1301302525	UB1301602525
	0,50 µm	280/300	UB1301152550	UB1301302550	UB1301602550
	1,00 µm	260/280	UB13011525100	UB13013025100	UB13016025100
0,32 mm	0,25 µm	280/300	UB1301153225	UB1301303225	UB1301603225
	0,50 µm	280/300	UB1301153250	UB1301303250	UB1301603250
	1,00 µm	260/280	UB13011532100	UB13013032100	UB13016032100
0,53 mm	1,00 µm	260/280	UB13011553100	UB13013053100	

Colonne Up	ptiBond UB62	4				mVolts	
2 n-De 3 n-Un 4 1-Oc 5 1-No	Butanediol ecane ndecane ctanol onanal	tR (min) 10.245 et 10.469 14.090 16.762 17.103 17.847 18.973	N° Pic 7 8 9 10 11 12	2-Éthylhexanoic acid 2,6-Diméthylaniline Méthyl decanoate Méthyl undecanoate	20.139 22.771 24.956 25.090	25— 20— 15— 10— 5—	
Temp. : 40 °	JB624303218 / N °C à 230 °C à 6 Ir : Hélium, 20 cr		911			-2	5 ho 1s 20 2s



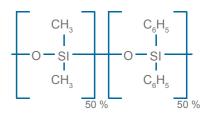
Colonnes UB1701


14 % Cyanopropyl - 86 % méthylpolysiloxane - USP : G46

Phases similaires: DB1701, HP-1701, RTx-1701, OV-1701, SPB-1701.

Applications: Pesticides, herbicides, sucres TMS, PCB.

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,25 µm	280/300	UB1701152525	UB1701302525	UB1701602525
	0,50 µm	280/300	UB1701152550	UB1701302550	UB1701602550
	1,00 µm	260/280	UB17011525100	UB17013025100	UB17016025100
0,32 mm	0,25 µm	280/300	UB1701153225	UB1701303225	UB1701603225
	0,50 µm	280/300	UB1701153250	UB1701303250	UB1701603250
	1,00 µm	260/280	UB17011532100	UB17013032100	UB17016032100
0,53 mm	1,00 µm	260/280	UB17011553100	UB17013053100	

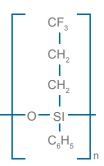


Colonnes UB17

50 % Diphényl - 50 % diméthylpolysiloxane - USP: G3

Phases similaires: HP-50+, Rtx-50, CP-Sil24CB, SPB-50, ZB-50, HP-17, BPX50...

Applications: Stéroïdes, drogues, pesticides.

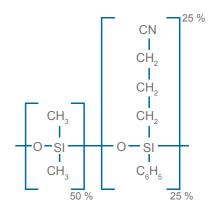

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,25 µm	280/300	UB17152525	UB17302525	UB17602525
0,32 mm	0,25 µm	280/300		UB17303225	UB17603225
0,53 mm	1,00 µm	260/280	UB171553100	UB173053100	

Colonnes UB210

50 % Trifluoropropyl - 50 % Méthylpolysiloxane - USP: G6

Phases similaires: DB-210, DB-200, Rtx-200, VF-200ms, 007-210, Optima 210, AT-210. Applications: Aldéhydes, pesticides, herbicides, organochlorés ou organophosphorés.

Ø int.	Film	θ limite °C	15 m	30 m
0,25 mm	0,25 µm	240/260		UB210302525
0,32 mm	0,25 µm	240/260		UB210303225
0,53 mm	1,00 µm	240/260	UB2101553100	UB2103053100



Colonnes UB225

50 % Cyanopropylméthyl - 50 % Phénylméthylpolysiloxane - USP : G19

Phases similaires: DB-225, HP-225, RTx-225, BP225. Applications: Esters méthyliques d'acides gras (FAME).

Ø int.	Film	θ limite °C	30 m
0,25 mm	0,25 µm	220/240	UB225302525
0,32 mm	0,25 μm	220/240	UB225303225
0.53 mm	0.50 um	220/240	UB225305350

Colonnes UBAmines

Applications: Amines, alcools.

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,32 mm	0,25 µm	265/300	UBAMINE1532	UBAMINE3032	UBAMINE6032

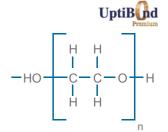
Produits Liés

Boite distributrice: Kit UptiVial
Une seule référence pour vos flacons et vos bouchons et capsules, un prix
attractif et une boite distributrice

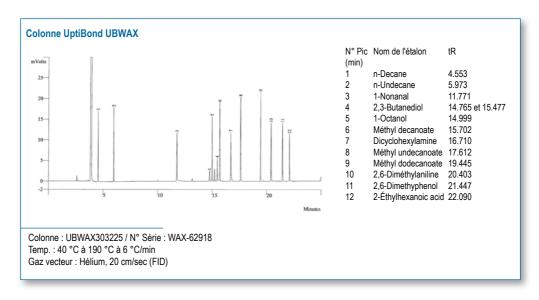
Disponible sur stock

Voir chapitre : Flacons & Capsules - UptiVial

Flacons & Capsules - Uptivial - Flacons à visser 9 mm certifiés



Colonnes UBWAX


Polyéthylène Glycol - USP: G16

Phases similaires: HP-20M, Supelcowax10, CP-WAX52CBI, BP-20,

Stabilwax, Rtx-WAX, ZB-WAX... Applications: Solvants, glycols, alcools.

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,25 µm	250/260	UBWAX152525	UBWAX302525	UBWAX602525
	0,50 µm	250/260	•••	UBWAX302550	UBWAX602550
0,32 mm	0,25 µm	250/260	UBWAX153225	UBWAX303225	UBWAX603225
	0,50 µm	250/260	•••	UBWAX303250	UBWAX603250
0,53 mm	1,00 µm	230/240	UBWAX1553100	UBWAX3053100	UBWAX6053100
	2,00 µm	230/240	UBWAX1553200	UBWAX3053200	•••
	3,00 µm	230/240		UBWAX3053300	

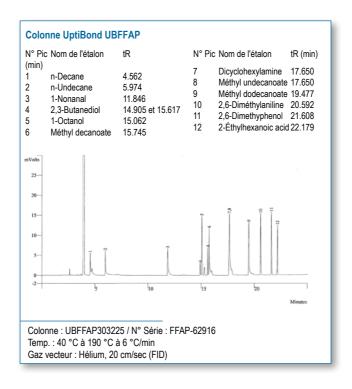
Colonnes UB WAX HT

Polyéthylène Glycol - USP : G16

Phases similaires: DB-WAX etr, SolGel-WAX. Applications: Composés à hauts points d'ébullition.

-40-	H H 	
-HO-		-H
	Н Н	
		n

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,25 µm	250/260		UBWAXHT302525	UBWAXHT602525
	0,50 µm	250/260		UBWAXHT302550	UBWAXHT602550
0,32 mm	0,25 µm	250/260		UBWAXHT303225	UBWAXHT603225
	0,50 µm	250/260		UBWAXHT303250	UBWAXHT603250
0,53 mm	1,00 µm	230/240	UBWAXHT1553100	UBWAXHT3053100	UBWAXHT6053100


Colonnes UBFFAP

Polyéthylène Glycol modifié acide nitrotéréphthalique

Phases similaires: DB-FFAP, CPWax58CB, BP-21...

Applications: Acides, alcools, aldéhydes, acrylates, cétones, nitriles.

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,25 µm	240/250	UBFFAP152525	UBFFAP302525	UBFFAP602525
	0,50 µm	240/250		UBFFAP302550	UBFFAP602550
0,32 mm	0,25 µm	240/250	UBFFAP153225	UBFFAP303225	UBFFAP603225
	0,50 µm	240/250		UBFFAP303250	UBFFAP603250
	1,00 µm	230/240		UBFFAP3032100	UBFFAP6032100
0,53 mm	0,25 µm			UBFFAP305325	•••
	0,50 µm	240/250	UBFFAP155350	UBFFAP305350	
	1,00 µm	230/240	UBFFAP1553100	UBFFAP3053100	

Produits Liés

Magic box GC : une boite de rangement et du consommable pour créer ou entretenir vos ligne de gaz, au chapitre :

Consommables - Magic BoxTM

Colonnes Ultra Inert Agilent J&W

- Gardez la même sélectivité et gagnez en inertie chimique pour vos analyses en GC/MS
- Effectuez des analyses de traces avec le degré de fiabilité le plus poussé
- Réduisez le bruit de fond au silence et oubliez les trainées des composés chimiquement actifs

Ces colonnes permettent d'effectuer une analyse de traces, dont l'analyse des acides, des bases et autres composés actifs, avec la fiabilité la plus poussée.

Elles garantissent également un circuit de CPG inerte, ce qui est essentiel pour la sensibilité, les performances et l'intégrité des résultats d'analyse.

Agilent garantit ainsi l'inertie chimique des surfaces entrant en contact avec vos échantillons. Vous pouvez ainsi atteindre des niveaux de détection de l'ordre de la ppb et même de la ppt pour vos analyses les plus ardues. La gamme Agilent Ultra Inert vous donne accès aux meilleurs résultats obtenus jusqu'ici : ceux des instruments de CPG, et inserts Ultra Inert ainsi que de la famille de colonnes Agilent J&W Ultra Inert.

La famille de colonnes Ultra Inert d'Agilent J&W pousse les normes industrielles vers une inertie chimique uniforme et un bleeding des colonnes toujours plus exceptionnellement faibles, avec à la clé des limites de détection toujours plus basses et des quantifications d'analyses difficiles toujours plus exactes. Chaque colonne Ultra Inert est testée avec l'échantillon le plus exigeant jamais élaboré et nous le démontrons avec un rapport de synthèse de performances livré avec chaque colonne.

Le mélange de test le plus draconien du marché assure une inertie de colonne et des résultats uniformes.

Un mélange test sévère peut mettre en évidence des sites d'activité de la colonne tandis qu'un mélange moins sévère peut effectivement masquer certains défauts.

Les composés du mélange test Agilent Ultra Inert ont une faible masse moléculaire, un bas point d'ébullition et leurs groupements actifs sont accessibles sans le moindre empêchement stérique. Ces caractéristiques leur permettent d'interagir sans restriction aucune avec la phase stationnaire et la surface de la colonne.

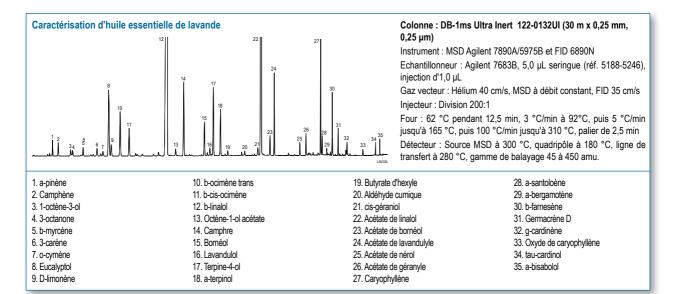
Test Colonne 5MS Ultra Inert	Test Colonne 1MS Ultra Inert	Test Colonne 35MS Ultra Inert
Composés / Test fonctionnel		
1-acide propionique / Basicité	1-acide propionique / Basicité	1-octène / Polarité
1-octène / Polarité	1-octène / Polarité	1-acide butyrique / Basicité
N-octane / Hydrocarbure de référence	N-octane / Hydrocarbure de référence	n-nonane / Hydrocarbure de référence
4-picoline / Acidité	1,2-butanediol / Silanol	4-picoline / Acidité
n-nonane / Hydrocarbure de référence	4-picoline/ Acidité	N-propylbenzène/ Polarité
Phosphate de Triméthyle / Acidité	Phosphate de triméthyle / Acidité	1-heptanol / Silanol, polarité
1,2-pentanediol / Silanol	N-propylbenzène / Hydrocarbure de référence	1,2-pentanediol / Silanol
N-propylbenzène / Hydrocarbure de référence	1-heptanol / Silanol	3-octanone / Polarité
1-heptanol / Silanol	3-octanone/Polarité	Phosphate de triméthyle / Acidité
3-octanone / Polarité	Tert-butylbenzène/ Hydrocarbure de référence	Tert-butylbenzène / Hydrocarbure de référence
N-décane / Efficacité	N-décane /Efficacité	N-undécane / Efficacité

Structures chimiques

Molécules de test à faible activité : Les groupements acides et basiques de ces molécules sont en partie masqués par les deux groupements méthyles des cycles phényle, ce qui diminue leur activité.

Molécules de test à forte activité: Les molécules de test du mélange Ultra Inert d'Agilent révèlent immédiatement toute activité de la phase stationnaire et des surfaces. Remarquez également que l'extrémité active de chacun des composés est disponible pour interagir avec n'importe quel site actif de la colonne.

Colonnes Ultra Inert


Colonnes DB1-ms UI

100 % Diméthylpolysiloxane Ultra Inert - USP: G2

Phases similaires: SPB-1, Rtx-1, BP-1, OV-10, OV-101, 007-1(MS), SP-2100, SE-30, ZB-1, AT-1, MDN-1, ZB-1, ZB-1ms.

Applications: Amines, hydrocarbures, pesticides, PCB, phénols, composés soufrés, arômes et parfums.

Ø int.	Film	θ limite °C	10 m	15 m	20 m	30 m	60 m
0,18 mm	0,18 µm	-60 à 325/350	121-0112UI		121-0122UI		
0,25 mm	0,25 µm	-60 à 325/350		122-0112UI		122-0132UI	122-0162UI
0,32 mm	0,25 µm	-60 à 325/350		123-0112UI		123-0132UI	

Colonnes HP-1ms UI

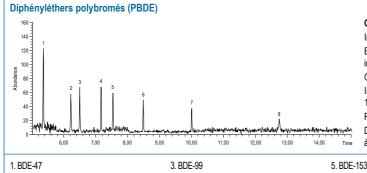
100 % Diméthylpolysiloxane Ultra Inert - USP : G2

Phases similaires: SPB-1, Rtx-1, BP-1, OV-10, OV-101, 007-1(MS), SP-2100, SE-30, ZB-1, AT-1, MDN-1, ZB-1ms. Applications: Amines, hydrocarbures, pesticides, PCB, phénols, composés soufrés, arômes et parfums.

Film	θ limite °C	15 m	20 m	25 m	30 m
0,18 µm	-60 à 325/350		19091S-677UI		
0,25 µm	-60 à 325/350	19091S-931UI			19091S-933UI
0,50 µm	-60 à 325/350				19091S-633UI
1,00 µm	-60 à 325/350				19091S-733UI
0,25 µm	-60 à 325/350	19091S-911UI			19091S-913UI
0,52 µm	-60 à 325/350			19091S-612UI	
1,00 µm	-60 à 325/350				19091S-713UI
	0,18 µm 0,25 µm 0,50 µm 1,00 µm 0,25 µm 0,52 µm	0,18 μm -60 à 325/350 0,25 μm -60 à 325/350 0,50 μm -60 à 325/350 1,00 μm -60 à 325/350 0,25 μm -60 à 325/350 0,52 μm -60 à 325/350	0,18 μm -60 à 325/350 0,25 μm -60 à 325/350 19091S-931UI 0,50 μm -60 à 325/350 1,00 μm -60 à 325/350 0,25 μm -60 à 325/350 19091S-911UI 0,52 μm -60 à 325/350	0,18 μm -60 à 325/350 19091S-677UI 0,25 μm -60 à 325/350 19091S-931UI 0,50 μm -60 à 325/350 1,00 μm -60 à 325/350 0,25 μm -60 à 325/350 19091S-911UI 0,52 μm -60 à 325/350	0,18 μm -60 à 325/350 19091S-677UI 0,25 μm -60 à 325/350 19091S-931UI 0,50 μm -60 à 325/350 1,00 μm -60 à 325/350 0,25 μm -60 à 325/350 19091S-911UI 0,52 μm -60 à 325/350 19091S-612UI

Autres configurations disponibles: colonnes sur cage 5", colonnes pour module LTM et colonnes pour Intuvo sur demande.

Colonnes DB-5ms UI


Equivalent 5 % Phényl - 95 % Méthylpolysiloxane (polymère phénylarylène) Ultra Inert - USP : G27

Phases similaires: Rtx-5ms, Rxi-5ms, Rxi-5Sil MS, PTE-5, BPX-5, AT-5ms, ZB-5ms,

ZB-5MSi, SLB-5ms, Equity-5.

Applications: Semi-volatils, composés halogénés, pesticides, herbicides, drogues, amines.

Ø int.	Film	θ limite °C	10 m	15 m	20 m	25 m	30 m	50 m	60 m
0,18 mm	0,18 µm	-60 à 325/350	121-5512UI		121-5522UI				
	0,36 µm	-60 à 325/350			121-5523UI				
0,25 mm	0,25 µm	-60 à 325/350	122-55H2UI	122-5512UI		122-5522UI	122-5532UI	122-5552UI	122-5562UI
	0,50 µm	-60 à 325/350					122-5536UI		
	1,00 µm	-60 à 325/350		122-5513UI			122-5533UI		122-5563UI
0,32 mm	0,25 µm	-60 à 325/350					123-5532UI		
	0,50 µm	-60 à 325/350					123-5536UI		
	1,00 µm	-60 à 325/350					123-5533UI		123-5563UI

Colonne: DB-5ms ultra inert 122-5512ui (15 m x 0,25 mm, 0,25 µm)

Instrument: MSD Agilent 6890N/5 973B

Echantillonneur : Agilent 7683B, $5.0 \mu L$ seringue (réf. 5188-5246), $1.0 \mu L$ injection sans division, 5 ng de chaque composé injecté dans la colonne

Gaz vecteur : Hélium 72 cm/s, débit constant

Injecteur : Sans division, pulsé ; 325 °C, 20 psi (1,37 bar) jusqu'à

1,5 min, débit de purge 50 mL/min à 2,0 min Four : 150 à 325 °C (17 °C/min), palier 5 min

Détecteur : Source MSD à 300 °C, quadripôle à 150 °C, ligne de transfert

à 300 °C, gamme de balayage 200 à 1000 uma

 1. BDE-47
 3. BDE-99
 5. BDE-153
 7. BDE-205

 2. BDE-100
 4. BDE-154
 6. BDE-183
 8. BDE-209

Colonnes HP-5ms UI

5 % phénylméthylpolysiloxane - USP: G27

 $\textcolor{red}{\textbf{Phases similaires}}: Rtx\text{-}5ms, \ Rxi\text{-}5ms, \ Rxi\text{-}5Sil \ MS, \ PTE\text{-}5, \ BPX\text{-}5, \ AT\text{-}5ms, \ ZB\text{-}5ms, \\ \textcolor{red}{\textbf{ZB-}5ms}, \ \textcolor{red$

SLB-5ms, Equity-7.

Applications: Semi-volatils, composés halogénés, pesticides, herbicides, drogues, amines.

Ø int.	Film	θ limite °C	15 m	20 m	30 m	60 m
0,18 mm	0,18 µm	-60 à 325/350		19091S-577UI		
0,25 mm	0,25 µm	-60 à 325/350	19091S-431UI		19091S-433UI	19091S-436UI
	0,50 µm	-60 à 325/350			19091S-133UI	
	1,00 µm	-60 à 325/350			19091S-233UI	
0,32 mm	0,25 µm	-60 à 325/350			19091S-413UI	
	1,00 µm	-60 à 325/350			19091S-213UI	

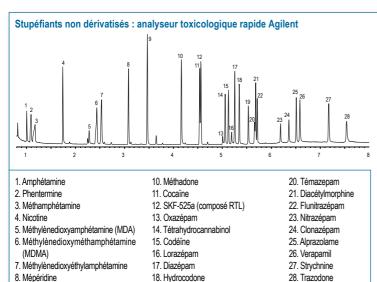
Autres configurations disponibles: colonnes sur cage 5", colonnes pour module LTM et colonnes pour Intuvo sur demande.

Produits Liés

Ferrules Ultra métal Agilent : Connectez vos colonnes capillaires avec des ferrules inertes sans dégradation de la colonne ni mauvais ajustement. Chapitre : Consommables - Accessoires GC -

Produits Liés

Utilisez la gamme complète Ultra-Inert Agilent avec la colonne, les liners, les ferrulies et les planchers de divolonne un circuit "ultra inert" de l'échantillon lors de l'analyse. Voir chapitre: Consommables - Accessoires GC - Inserts d'injection



Colonnes DB-35ms UI

35 % phénylméthylpolysiloxane - USP : G42

Phases similaires: Rtx-35, Rtx-35ms, Rxi-35Sil MS, SPB-35, AT-35, Sup-Herb, MDN-35, BPX-35, ZB-35, ZB-35 ht. Applications: Médicaments, drogues, pesticides, PCB.

Ø int.	Film	θ limite °C	15 m	20 m	30 m
0,18 mm	0,18 µm	50 à 340/360		121-3822UI	
0,25 mm	0,25 µm	50 à 340/360	122-3812UI		122-3832UI
0,32 mm	0,25 µm	50 à 340/360			123-3832UI

Colonne: DB-35 ms Ultra Inert 122-3812UI (15 m x 0,25 mm, 0,25 µm)

Gaz vecteur : Pression d'hélium constante de 35,0 psi (2,40 bar) Injection : Sans division 1 μ L 280°C, débit total 56,4 mL/min, purge de septum commutée 3 mL/min, économiseur de gaz désactivé, 50 mL/min au bout de 0,4 min

Insert : Sans division, double rétreint, désactivé, 4 mm de d.i., 5181-3315 Echantillon : Mélange de contrôle pour analyse toxicologique en CPG/ SM (réf. 5190-0471)

Rétrobalayage : Temps postanalyse : 1 min, injecteur 1 psi (69 mbar),EPC aux 75 psi (5,2 bar)

Four : 100 °C (0,25 min) à 345 °C (40 °C/min, 2,25 min palier) Détecteur : MSD : Ligne de transfert 300 °C, source 300 °C, quadripôle 180 °C mode balayage

NPD: billes Blos 300 °C H2 3 mL/min, 60 mL/min air,

débit d'appoint + col. 11 mL/min

Élément CFT : Diviseur 2 voies avec expulsion du solvant entre le MSD et le NPD

Exemple de chromatogramme sur NPD de stupéfiants non dérivatisés 5 ng/constituant sur une colonne Agilent J&W DB-35ms UI. Le composé n° 12 est utilisé pour le verrouillage des temps de rétention dans la base de données du logiciel de rapports de déconvolution.

Colonnes DB-624 UI

9. Phéncyclidine

6 % Cyanopropylphényl - Méthylpolysiloxane - USP : G43

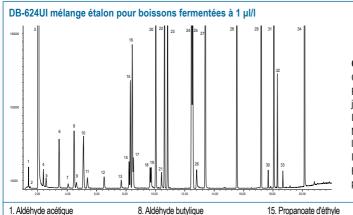
19. Oxycodone

Phases similaires: AT-624, Rxi-624 Sil MS, Rtx-624, PE-624, 007-624, 007-502, ZB-624.

Applications: Composés Organiques Volatils, solvants, produits pétrochimiques, chimie fine, alcools, huiles de fusel.

- Méthodes pour les composés organiques volatils (COV) environnementaux.
- Excellent pour les méthodes de l'EPA (États-Unis): 501.3, 502.2, 503.1, 524.2, 601, 602, 8010, 8015, 8020, 8240, 8260.
- Analyses de l'industrie chimique : solvants, produits pétrochimiques, chimie fine.
- Industrie agroalimentaire : alcools, huiles de fusel.
- Solvants résiduels pharmaceutiques selon USP <467>.
- Le traitement sous inertie chimique extrême élargit la gamme des applications avec une très bonne forme de pic pour les composés acides de faible poids moléculaire.
- La procédure de test de la caractéristique "Ultra Inert" garantit les performances de premier plan de chaque colonne.
- Sélectivité identique à la colonne de référence du marché, la DB-624 (pas de changement de méthode)
- Optimisée par les inventeurs de la DB-624.

	ı
	ı
7	
_	
Ф	
+	ı
	ı
O	ı


Ø int.	Film	θ limite °C	20 m	30 m	60 m
0,18 mm	1,00 µm	-20 à 260	121-1324UI		
0,25 mm	1,40 µm	-20 à 260		122-1334UI	122-1364UI
0,32 mm	1,80 µm	-20 à 260		123-1334UI	123-1364UI
0,53 mm	3,00 µm	-20 à 260		125-1334UI	125-1374UI

Colonnes capillaires - Agilent J&W Ultra Inert

Agilent Technologies

Colonne: DB-624UI 123-1334UI (30 m x 0,32 mm, 1,8 µm)

Gaz vecteur : Hélium, 2,3 mL/min, débit constant réglé à 35 °C

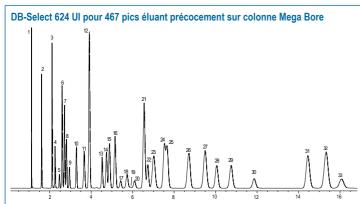
Four: 35 °C pendant 5 min; 10 °C/min jusqu'à 100 °C, 1,5 min; 15 °C/min jusqu'à 220 °C, 3,0 min ; 25 °C/min jusqu'à 250 °C, 2,8 min

Injecteur : Avec/sans division, 220 °C, 1 µL, avec division 20:1 Restricteur MSD: Mode balayage 30 à 400 uma, source à 230 °C, quad à 150 °C,

ligne de transfert à 260 °C Instrument : Agilent 7890/5975C équipé avec MMI et FID

Echantillonneur : Échantillonneur d'espace de tête Agilent 7697A avec

plateau 111 positions, boucle d'échantillonnage 1 mL


- 1. Aldéhyde acétique
- 2. Méthanol
- 3. Éthanol
- 4. Acétone

- 5. Isopropanol
- 6. Isobutyl-aldéhyde 7. 1-propanol
- 9. 2,3 butanedione (VDK)
- 10. Acétate d'éthyle
- 11. 2-butanol
- 12. Isobutanol
- 13. 1-butanol
- 14. 2,3 pentanedione (VDK)
- 15. Propanoate d'éthyle
- 16. Acétate de propyle 17. 3-pentanol
- 18. Alcool isoamylique
- 19. Alcool amylique activé 20. Acétate d'isobutyle
- 21. 1-pentanol
- 22. Butanoate d'éthyle 23. Hexanal
- 24. Acétate d'isoamyle
- 25. Acétate d'amyle activé 26. 1-Hexanol
- 27. Heptanal
- 28. Octanal

- 29. 1,3,5-trioxane impureté
- 30. 1,3,5-trioxane impureté 31. Caprylate d'éthyle
- 32. Acétate de 1-phényl-éthyle
- 33. 3-méthoxy-benzaldéhyde
- 34. Caprate d'éthyle

Colonnes DB-624 UI pour méthodes USP 467

Ø int.	Film	θ limite °C	30 m	60 m
0,25 mm	1,40 µm	40 à 260	122-0334UI	122-0364UI
0,32 mm	1,80 µm	40 à 260	123-0334UI	123-0364UI
0.53 mm	3.00 um	40 à 260	125-0334UI	

DB-Select 624 UI pour <467> 125-0334UI (30 m x 0,53 mm x 3,0 µm)

Gaz vecteur : Hélium à 44 cm/s (6 mL/min env.) à 40 °C,

EPC à débit constant

Four: 40 °C palier 20 min, ensuite 10°C/min jusqu'à 170 °C

Détecteur : FID à 240 °C, H2 à 30 mL/min, Air à 400 mL/min, N2 d'appoint à 35 mL/min (débit constant colonne + appoint)

Echantillon: Signal FID

1. Méthane

2. Méthanol

Éthanol

4. Diéthyléther 5. 1,1-dichloroéthylène

6. 2-propanol 7. Acétonitrile 8. Acétate de méthyle

9. Dichlorométhane

10. trans-1,2-dichloroéthylène

11. n-Hexane 12. 1-propanol

13. Nitrométhane 14. cis-1,2-dichloroéthylène 15. Acétate d'éthyle

16. 2-butanol 17. Chloroforme

18. 1,1,1-trichloroéthane 19. Cyclohexane

20. Tétrachlorure de carbone 21. Benzène

22. 1.2 dichloroéthane

23. Isooctane (2,2,4-triméthylpen-

24. 3-méthyl-2-btutanone 25. n-Heptane

26. Trichloréthylène

27. Méthylcyclohexane

28. 1,4-Dioxane 29. Acétate de propyle

30. 2-éthoxyéthanol

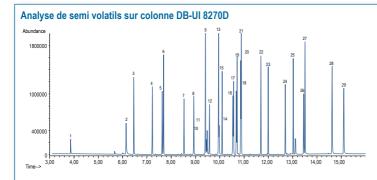
31. Excellente forme du pic de

pyridine 32. Toluène

33. 3-méthyl-1-butanol

Produits Liés

Inserts ultra inerte : livrés dans un emballage "sans contact" avec des joints toriques anti-adhérents certifiés pré assemblés. Consommables I Accessoires GC I Inserts d'injection Agilent


Colonnes DB-UI 8270D

Phases similaires: ZB-Semi volatils

Applications: Composés organiques semi volatils (Méthode 8270D).

- Conçue pour la méthode 8270D de l'EPA (États-Unis) et l'analyse par CPG/SM d'autres semi-volatils réglementés.
- Des tests spécifiques avec des composés semi-volatils garantissent les performances pour l'analyse de traces fiables d'une colonne à l'autre.
- Excellente réponse au 2,4-nitrophénol
- Inertie ultime et faible ressuage

Ø int.	Film	θ limite °C	20 m	30 m
0,18 mm	0,36 µm	-60 à 325/350	121-9723	
0,25 mm	0,25 µm	-60 à 325/350	•••	122-9732
	0.50 um	-60 à 325/350		122-9736

Colonne 1 : DB-UI 8270D (20 m x 0,18 mm 0,36 µm) Réf. : 121-9723 Colonne 2 : Tube silice fondue désactivée (1,0 m x 0,15 mm) Réf. : 160-1625-10

Gaz vecteur : Hélium, Débit constant 1,58 mL/min fixé à 40°C Four : 40 °C (2,5 min), 25 °C/min jusqu'à 320 °C (4,8 min)

Injecteur : Split / Splitless 1 µL splitless pulsé ; 300 °C 44 psi pulse jusqu'à 1,4 min, débit de purge 50 mL/min à 1,42 min, économiseur de gaz éteint.

Insert d'injection : Ultra Inert - Réf. : 5190-2293

MSD : Ligne de transfert : 325 °C, Source : 300 °C, Quad : 150 °C,

Gamme AMU: 30 - 550

GC / MSD : Agilent GC 7890 / MSD 5975C

Passeur d'échantillon : Agilent 7683B, seringue 5 µL (G4513-80206)

EPC aux.: 2 psi avec 5 mL/min pendant l'analyse

Backflush: après analyse 3,5 min à 75 psi EPC aux., 2 psi dans l'injecteur

- 1. N-Nitrosodiméthylamine
- 2. Aniline
- 3. 1,4-Dichlorobenzene-d4
- 4. Isophorone
- 5. 1,3-Diméthyl-2-nitrobenzene
- 6. Naphthalene
- 7. Hexachlorocyclopentadiene
- 8. Mevinphos
- 9. Acenaphthene-d10
- 10. 2,4-Dinitrophenol
- 11. 4-Nitrophenol
- 12. 2,4-Dinitrotoluene
- 13. Flourene
- 14. 4,6-Dinitro-2-méthyl phenol
- 15. Trifl uralin
- 16. Simazine
- 17. Atrazine
- 18. Pentachorophenol
- 19. Terbufos
- 20. Chlorothanlonil 21. Phenanthrene-d10
- 22. Aldrin
- 23. Heptachlor epoxide
- 24. Endrin

- 25. 4,4'-DDT
- 26. 3,3'-Dichlorobenzidine
- 27. Chrysene d-12
- 28. Benzo[b]fl ouranthene
- 29. Perylene-d12

Autres configurations disponibles: colonnes sur cage 5", colonnes pour module LTM et colonnes pour Intuvo sur demande.

Produits Liés

L'efficacité de vos méthodes SPE dépend de la propreté de vos échantillons, une étape de filtration en amont est souvent nécessaire

La gamme Agilent Captiva vous assure un traitement de l'échantillon optimal, retrouvez-la dans le chapitre Préparation Echantillons.

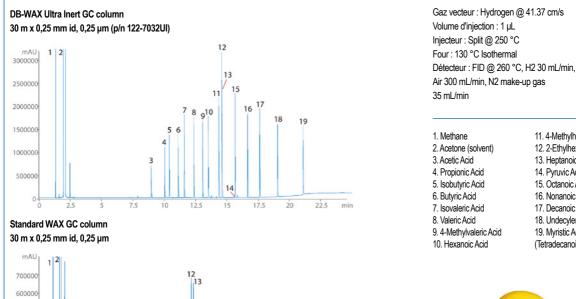
Colonnes capillaires - Agilent J&W Ultra Inert

Colonnes DB-WAX UI

100 % Polyéthylèneglycol (Bonded) - USP: G16

Phases similaires: Stabilwax MS, ZB-WAX Plus

Comparaison analyse acides gras libres


500000 400000

300000

Applications: Alcools, Glycols (Diols), Acides, Aldéhydes, FAME, Acides gras libres, Arômes...

- Excellent inertie pour des analyses de composés polaires, pas de trainée de pics
- Même sélectivité que les colonnes DB-WAX, pas besoin de revalider les méthodes
- Meilleure résistance thermique et durée de vie
- Phase greffée et réticulée : rinçable, injections aqueuses tolérées

Ø int.	Film	θ limite °C	15 m	20 m	25 m	30 m	60 m
0,18 mm	0,18 µm	20 - 250/260		121-7022UI			
	0,30 µm	20 - 250/260		121-7023UI			
0,20 mm	0,20 µm	20 - 250/260			128-7022UI		
0,25 mm	0,25 µm	20 - 250/260	122-7012UI				122-7062UI
	0,50 µm	20 - 240/250				122-7033UI	122-7063UI
0,32 mm	0,25µm	20 - 250/260	123-7012UI			123-7032UI	123-7062UI
	0,50 μm	20 - 240/250				123-7033UI	123-7063UI
0,53 mm	0,25µm	20 - 230/240				125-7031UI	
	0,50 µm	20 - 230/240				125-7037UI	
	1,00 µm	20 - 230/240	125-7012UI			125-7032UI	125-7062UI

10

Air 300 mL/min, N2 make-up gas 11. 4-Methylhexanoic Acid noic Acid

2. Acetone (solvent)	12. 2-Ethylhexanoid
3. Acetic Acid	13. Heptanoic Acid
4. Propionic Acid	Pyruvic Acid
Isobutyric Acid	15. Octanoic Acid
6. Butyric Acid	Nonanoic Acid
7. Isovaleric Acid	17. Decanoic Acid
8. Valeric Acid	18. Undecylenic Ac
9. 4-Methylvaleric Acid	19. Myristic Acid
10. Hexanoic Acid	(Tetradecanoic)

25

Colonnes DB-BAC1 UI, DB-BAC2 UI

Phases similaires: Rtx-BAC Plus 1, Rtx-BAC Plus 2, ZB-BAC-1, and ZB-BAC-2

Applications : Alcoolémie

- Grande inertie
- Résolution et séparation à la ligne de base optimisées pour les pics critiques de l'analyse d'alcool dans le sang 8260.
- Excellente forme de pic et une intégration précise des composés faiblement concentrés
- Identification précise des composés polaires difficiles, même à l'état de traces
- Quantification exacte et crédible avec les étalons éthanol Agilent traçables aux normes NIST et ERM

Type de colonne	Ø int.	Film	θ limite °C	30 m
DACATII	0,32 mm	1,80 µm	20 à 270	123-9334UI
BAC1 UI	0,53 mm	3,00 µm	20 à 270	125-9334UI
BAC2 UI	0,32 mm	1,20 µm	-20 à 260	123-9434UI
BAGZ UI	0,53 mm	2,00 µm	-20 à 260	125-9434UI

Colonnes DB-FAT WAX UI

USP: G42

Colonnes de type PEG spécifiques aux applications pour les FAME (Ester Méthyliques d'Acides Gras), les FAEE (Esters Éthyliques d'Acides Gras) et les acides gras.

- Testé individuellement avec un mélange FAME et un test spécifique Ultra Inert Wax
- Colonne fiable à la performance d'inertie de la colonne
- Forme de pic améliorée pour les composés polaires difficiles tels que les acides gras libres
- Haute polarité; équivalent à USP G16
- Phase greffée et réticulée : rinçable, injections aqueuses tolérées

Cette colonne est testée avec un mélange FAME pour garantir des valeurs de longueur de chaîne équivalente (ECL) FAME reproductibles, une identification correcte des FAME importants tels que EPA, DPA et DHA, et la résolution des paires clés de FAME.

Ø int.	Film	θ limite °C	20 m	30 m
0,18 mm	0,18 µm	250/260	G3903-63007	
0,25 mm	0,25 µm	250/260		G3903-63008
0,32mm	0,25 µm	240/250		G3903-63009

Etalons alcools Agilent

Description	Concentration	Réf.	Qté
Ethanol dans matrice aqueuse	0,02 g/dL	5190-9756	1 mL x 10
	0,05 g/dL	5190-9757	1 mL x 10
	0,08 g/dL	5190-9758	1 mL x 10
	0,10 g/dL	5190-9759	1 mL x 10
	0,15 g/dL	5190-9760	1 mL x 10
	0,20 g/dL	5190-9761	1 mL x 10
	0,30 g/dL	5190-9762	1 mL x 10
	0,40 g/dL	5190-9763	1 mL x 10
Mélange "Blood Alcohol Checkout"	0,50 g/dL	5190-9765	Ampoule 1 mL
(1 Methanol 2 Acetaldehyde 3 Ethanol 4 Is	conronanol 5 + Butanol	6 Propagal 7 n Pro	onanol

Colonnes DB-1ms

100 % diméthylpolysiloxane - USP: G2

Phases similaires: SPB-1, Rtx-1, BP-1, OV-1, OV-101, 007-1(MS), SP-

2100, SE-30, ZB-1, AT-1, MDN-1, ZB-1, ZB-1ms.

Applications: Amines, hydrocarbures, pesticides, PCB, phénols,

composés soufrés, arômes et parfums.

CH ₃	\neg	
-0-SI		
CH ₃	100) %

Ø int.	Film	θ limite °C	10 m	12 m	15 m	20 m	25 m	30 m	60 m
0,10 mm	0,10 µm	-60 à 340/360	127-0112			127-0122			
	0,40 µm	-60 à 340/360	127-0113			127-0123			
0,18 mm	0,18 µm	-60 à 340/360				121-0122			
0,20 mm	0,33 µm	-60 à 340/350		128-0112			128-0122		
0,25 mm	0,10 µm	-60 à 340/360						122-0131	
	0,25 µm	-60 à 340/360			122-0112			122-0132	122-0162
0,32 mm	0,10 µm	-60 à 340/360						123-0131	
	0,25 µm	-60 à 340/360			123-0112			123-0132	123-0162

Colonnes HP-1ms

100 % Diméthylpolysiloxane ressuage ultrafaible - USP : G2

Phases similaires: Rtx-1ms, Rxi-1ms, MDN-1, AT-1, ZB-1ms, Equity-1. Applications: Amines, hydrocarbures, pesticides, PCB, phénols, composés sulfurés, arômes et parfums.

Ø int.	Film	θ limite °C	15 m	20 m	25 m	30 m	60 m
0,18 mm	0,18 µm	-60 à 325/350		19091S-677			
0,20 mm	0,33 µm	-60 à 325/350			19091S-602		
0,25 mm	0,10 µm	-60 à 325/350				19091S-833	
	0,25 µm	-60 à 325/350	19091S-931			19091S-933	19091S-936
	0,50 µm	-60 à 325/350				19091S-633	
	1,00 µm	-60 à 325/350				19091S-733	
0,32 mm	0,25 µm	-60 à 325/350	19091S-911			19091S-913	
	0,52 µm	-60 à 325/350			19091S-612		
	1,00 µm	-60 à 325/350				19091S-713	

Colonnes CP-Sil 5 CB MS

100 % diméthylpolysiloxane - USP: G1, G2

Ø int.	Film	θ limite °C	10 m	15 m	25 m	30 m	50 m	60 m
0,18 mm	0,15 µm	-60 à 330/350		CP7802				
0,25 mm	0,10 µm	-60 à 330/350				CP7817		
	0,12 µm	-60 à 330/350			CP7840			
	0,25 µm	-60 à 330/350			CP7842	CP7860	CP7843	CP7861
	0,40 µm	-60 à 330/350			CP7844		CP7845	
	1,00 µm	-60 à 325/350		CP7812		CP7862		CP7857
	1,20 µm	-60 à 325/350					CP7853	
0,32 mm	0,12 µm	-60 à 330/350	CP7858					
	0,25 µm	-60 à 330/350				CP7863		
	0,52 µm	-60 à 325/350			CP7854			
	1,00 µm	-60 à 325/350				CP7865		CP7866

Colonnes VF-1ms

100 % diméthylpolysiloxane - USP : G2

Phases similaires: Rtx-1ms, Rxi-1ms, MDN-1, AT-1, ZB-1ms, Equity-1. Applications: Alcools, hydrocarbures aromatiques, esters, acides gras libres, hydrocarbures halogénés, cétones, acides organiques, PAHs, pesticides, stéroides, solvants, parfums, arômes, etc...

Ø int.	Film	θ limite °C	10 m	12 m	15 m	20 m	25 m	30 m	50 m	60 m
0,10 mm	0,10 µm	-60 à 325/350	CP8900			CP8902				
	0,40 µm	-60 à 325/350	CP8901			CP8903				
0,15 mm	0,15 µm	-60 à 325/350	CP9030		CP5881	CP9031				
0,20 mm	0,60 µm	-60 à 325/350				CP9032				
	0,33 µm	-60 à 325/350		CP8904			CP8905			
0,25 mm	0,10 µm	-60 à 325/350			CP8906			CP8911		
	0,25 µm	-60 à 325/350			CP8907		CP8909	CP8912	CP8914	CP8916
	0,40 µm	-60 à 325/350					CP8910		CP8915	
	1,00 µm	-60 à 325/350			CP8908			CP8913		CP8917
0,32 mm	0,10 µm	-60 à 325/350						CP8923		
	0,25 µm	-60 à 325/350			CP8919		CP8921	CP8924		CP8929
	0,40 µm	-60 à 325/350					CP8922		CP8928	CP8930
	0,50 µm	-60 à 325/350						CP8925		
	1,00 µm	-60 à 325/350						CP8926		
0,53 mm	0,50 µm	-60 à 325/350			CP8965			CP8968		
	1,00 µm	-60 à 325/350						CP8969		
	1,50 µm	-60 à 325/350			CP8967			CP8970		
		7.0010							,	

Livrée avec une cage EZ-GRIP.

Colonnes DB-5ms

Film

5 % phényl - 95 % diméthylpolysiloxane (phénylarylène)- USP : G27

Phases similaires: Rtx-5, SPB-5, PTE-5, CP-Sil 8CB, SE-54, DB-5ht, DB-5.625, Mtx-5, OV-5, SE-52, GC-5, 007-2, RSL-200, MDN-5, BP-5, UptiBond 5 Premium, DB-5MS, CP-Sil 8CB/MS, BPX-5.

Applications: Alcaloïdes, drogues, esters méthyliques d'acides gras, composés halogénés, composés aromatiques, semi-volatils.

12 m

15 m

θ limite °C

50 m

60 m

40 m

0,18 mm	0,18 µm	-60 à 325/350	121-5512*		121-5522		121-5532	121-5542		
0,20 mm	0,36 µm	-60 à 325/350			121-5523					
	0,33 µm	-60 à 325/350	128-5512			128-5522			128-5552	
0,25 mm	0,10 µm	-60 à 325/350		122-5511			122-5531			122-5561
	0,25 µm	-60 à 325/350		122-5512		122-5522	122-5532			122-5562
	0,50 µm	-60 à 325/350		122-5516			122-5536			
	1,00 µm	-60 à 325/350		122-5513			122-5533			122-5563
0,32 mm	0,10 µm	-60 à 325/350		123-5511			123-5531			123-5561
	0,25 µm	-60 à 325/350		123-5512			123-5532			123-5562
	0,50 µm	-60 à 325/350					123-5536			123-5566
	0,52 µm	-60 à 325/350				123-5526				
	1,00 µm	-60 à 325/350		123-5513			123-5533			123-5563
0,53 mm	0,50 µm	-60 à 300/320					125-5537			
	1,50 µm	-60 à 300/320		125-5512			125-5532			

20 m

25 m

30 m

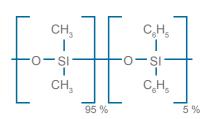
*10 m

Ø int.

Analyse GC Analyse GC Colonnes capillaires - Agilent J&W MS

. ■ SOMMAIRE

Colonnes HP-5ms


5 % phényl méthylpolysiloxane - USP: G27

Phases similaires: Rtx-5ms, Rxi-5ms, Rxi-5Sil MS, PTE-5, BPX-5,

AT-5ms, ZB-5ms, SLB-5ms, Equity-5.

Applications: Semi-volatils, alcaloïdes, drogues, FAME, composés

halogénés, pesticides, herbicides.

Agilent Technologies

Ø int.	Film	θ limite °C	12 m	15 m	20 m	25 m	30 m	50 m	60 m
0,18 mm	0,18 µm	-60 à 300/320			19091S-577				
0,20 mm	0,33 µm	-60 à 300/320	19091S-101			19091S-102		19091S-105	
0,25 mm	0,10 µm	-60 à 300/320		19091S-331			19091S-333		19091S-336
	0,25 µm	-60 à 300/320		19091S-431			19091S-433		19091S-436
	0,50 µm	-60 à 300/320					19091S-133		
	1,00 µm	-60 à 300/320		19091S-231			19091S-233		
0,32 mm	0,10 µm	-60 à 300/320					19091S-313		
	0,25 µm	-60 à 300/320					19091S-413		19091S-416
	0,50 µm	-60 à 300/320					19091S-113		
	0,52 µm	-60 à 300/320				19091S-112			
	1,00 µm	-60 à 300/320					19091S-213		

Autres configurations disponibles: colonnes sur cage 5", colonnes pour module LTM et colonnes pour Intuvo sur demande.

Colonnes CP-SIL 8CB MS

5 % phényl méthylpolysiloxane - USP : G27

Ø int.	Film	θ limite °C	15 m	25 m	30 m	50 m	60 m
0,25 mm	0,12 µm	-60 à 330/350		CP5840			
	0,25 µm	-60 à 330/350	CP5868	CP5842	CP5860	CP5843	CP5861
	0,40 µm	-60 à 325/350		CP5844		CP5845	
	0,50 µm	-60 à 325/350			CP5871		
	1,00 µm	-60 à 325/350			CP5862		
0,32 mm	0,25µm	-60 à 330/350	CP5874		CP5863		CP5864
	0,50 µm	-60 à 325/350			CP5880		
	0,52 µm	-60 à 325/350		CP5876			
	1,20 µm	-60 à 325/350				CP5853	

Produits Liés

Optez pour une coupe de précision de vos colonnes capillaires

Consommables - Accessoires & outils divers GC

Produits Liés

Les pics fantômes peuvent résulter de l'accumulation de débris de septum dans l'injecteur. Pour éviter ces désagréments, utiliser les septa anti-adhérents Agilent Premium à guide central.

Colonnes VF-5ms

5 % phényl méthylpolysiloxane - USP : G27

Phases similaires: Rtx-5ms, Rxi-5ms, Rxi-5Sil MS, PTE-5, BPX-5, AT-5ms, ZB-5ms, ZB-5MSi, SLB-5ms, Equity-5.

Applications: Alcools, amines, hydrocarbures aromatiques, drogues, esters, FAME, parfums, arômes, glycérides, composés halogénés, PAHs, PCBs, pesticides, phénols, solvants, stérols, sucres, etc...

Ø int.	Film	θ limite °C	10 m	12 m	15 m	20 m	25 m	30 m	40 m	50 m	60 m
0,10 mm	0,40 µm	-60 à 325/350	CP8934								
0,15 mm	0,15 µm	-60 à 325/350	CP9034		CP9035	CP9036			CP9039		
	0,30 µm	-60 à 325/350				CP9037					
	0,60 µm	-60 à 325/350				CP9038					
0,20 mm	0,33 µm	-60 à 325/350		CP8935			CP8936			CP8937	
0,25 mm	0,10 µm	-60 à 325/350			CP8938			CP8943			CP8948
	0,25 µm	-60 à 325/350			CP8939	CP9043	CP8941	CP8944		CP8947	CP8960
	0,50 µm	-60 à 325/350			CP8963			CP8945			
	1,00 µm	-60 à 325/350			CP8940			CP8946			CP8949
0,32 mm	0,10 µm	-60 à 325/350			CP8950						
	0,25 µm	-60 à 325/350						CP8955			CP8961
	0,40 µm	-60 à 325/350								CP8959	
	0,50 µm	-60 à 325/350						CP8956			
	0,52 µm	-60 à 325/350					CP8953				
	1,00 µm	-60 à 325/350						CP8957			CP8962
0,53 mm	0,12 µm	-60 à 325/350	CP8131								
	0,25 µm	-60 à 325/350	CP8132								
	0,50 µm	-60 à 325/350	CP8133		CP8971			CP8974			
	1,00 µm	-60 à 325/350						CP8975			
	1,50 µm	-60 à 310/335						CP8976			

Colonnes DB-XLB

Phases similaires: Rtx-XLB, MDN-12, ZB-XLB, ZB-XLB HT. Applications: Pesticides, herbicides, PCB, PAH.

• Ressuage très faible

XLB: Exceptionnally low bleed

Autres configurations disponibles: colonnes sur cage 5", colonnes pour module LTM et colonnes pour Intuvo sur demande.

Ø int.	Film	θ limite °C	15 m	20 m	25 m	30 m	60 m
0,18 mm	0,18 µm			121-1222		121-1232	
0,20 mm	0,33 µm				128-1222		
0,25 mm	0,10 µm		122-1211			122-1231	
	0,25 µm		122-1212			122-1232	122-1262
	0,50 µm					122-1236	
	1,00 µm					122-1233	
0,32 mm	0,25 µm					123-1232	123-1262
	0,50 µm					123-1236	
0,53 mm	1,50 µm		125-1212			125-1232	

Colonnes VF-Xms

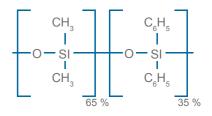
modification avec groupe arylène

Phases similaires: Rtx-XLB, MDN-12, ZB-XLB, ZB-XLB HT.

Applications: Pesticides, herbicides, PCBs, PAHs.

Agilent Technologies

Ø int.	Film	θ limite °C	20 m	30 m	60 m
0,15 mm	0,15 µm	30 à 340/360	CP9041		
0,25 mm	0,10 µm	30 à 340/360		CP8805	
	0,25 µm	30 à 340/360		CP8806	CP8809
	0,50 µm	30 à 340/360		CP8807	
0,32 mm	0,25 µm	30 à 325/340		CP8813	CP8816


Colonnes DB-35ms

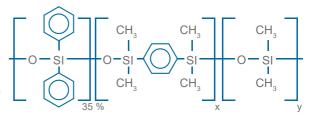
35 % Phénylméthylpolysiloxane - USP: G42

Phases similaires: Rtx-35, Rtx-35ms, Rxi-35Sil MS, SPB-35, AT-35, Sup-

Herb, MDN-35, BPX-35, ZB-35, ZB-35 ht.

Applications: Médicaments, drogues, pesticides, PCB.

Ø int.	Film	θ limite °C	15 m	20 m	25 m	30 m	60 m
0,18 mm	0,18 µm	50 à 340/360		121-3822			
0,20 mm	0,33 µm	50 à 340/360	128-3812		128-3822		
0,25 mm	0,15 µm	50 à 340/360				122-3831	
	0,25 µm	50 à 340/360	122-3812			122-3832	122-3862
0,32 mm	0,25 µm	50 à 340/360	123-3812			123-3832	
0,53 mm	0,50 µm	50 à 320/340				125-3837	
	1,00 µm	50 à 320/340				125-3832	•••



Colonnes VF-35ms

35 % phényl méthylpolysiloxane (arylène) - USP : G42

Phases similaires: Rtx-35, Rtx-35ms, Rxi-35Sil MS, SPB-35, AT-35, Sup-Herb, MDN-35, BPX-34, ZB-35, ZB-35 ht.

Applications: Composés aromatiques, pesticides, herbicides et autres composés aromatiques substitués.

Ø int.	Film	θ limite °C	10 m	15 m	20 m	30 m	60 m
0,15 mm	0,15 µm	40 à 340/360	CP5887		CP5889		
0,25 mm	0,10 µm	40 à 340/360				CP8875	
	0,25 µm	40 à 340/360		CP8874		CP8877	CP8880
	0,50 µm	40 à 340/360				CP8878	
	1,00 µm	40 à 340/360				CP8879	
0,32 mm	0,25 µm	40 à 340/360				CP8882	
	0,50 µm	40 à 340/360				CP8883	
	1,00 µm	40 à 340/360				CP8884	

Colonnes DB-17ms

50 % phényl méthylpolysiloxane - USP: G3

Phases similaires: UptiBond 17

HP-50+, RTX50, VF-17ms, BPX-50, AT-50.

Applications: Dioxines et furanes HAP, Hallucinogènes, drogues, glycols,

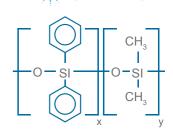
pesticides, stéroïdes...

CH ₃	CH ₃	CH ₃
CH ₃	CH ₃	CH ₃

Ø int.	Film	θ limite °C	15 m	20 m	30 m	60 m
0,18 mm	0,18 µm	40 à 320/340		121-4722		
0,25 mm	0,15 µm	40 à 320/340	122-4711		122-4731	
	0,25 µm	40 à 320/340	122-4712		122-4732	122-4762
0,32 mm	0,25 µm	40 à 320/340	123-4712		123-4732	

Autres configurations disponibles: colonnes sur cage 5", colonnes pour module LTM et colonnes pour Intuvo sur demande.

Colonnes VF-17ms


50 % phényl - 50 % diméthylpolysiloxane - USP : G3

Phases similaires: Rxi-17Sil MS, Rtx-50, 007-17, SP-2250, SPB-50,

BPX-50, SPB-17, AT-50.

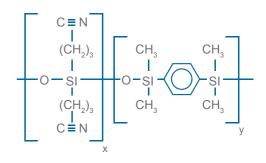
Applications: Composés aromatiques substitués, antidépresseurs,

herbicides, pesticides.

Agilent Technologies

Ø int.	Film	θ limite °C	10 m	15 m	20 m	30 m	60 m
0,10 mm	0,10 µm	40 à 330/360	CP8997				
	0,20 µm	40 à 330/360	CP8977				
0,15 mm	0,15 µm	40 à 330/360	CP5882		CP5884		
0,25 mm	0,15 µm	40 à 330/360				CP8981	
	0,25 µm	40 à 330/360		CP8979		CP8982	CP8984
	0,50 µm	40 à 330/360		CP8980		CP8983	
0,32 mm	0,15 µm	40 à 330/360		CP8986			
	0,25 µm	40 à 330/360				CP8990	CP8992
	0,50 µm	40 à 330/360				CP8991	
0,53 mm	1,00 µm	40 à 310/340				CP9001	

Colonnes VF-23ms

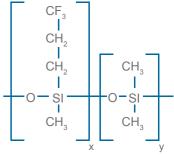

Cyanopropyl modifié - USP: G5

Phases similaires: SP-2330, Rtx-2330, 007-23, AT-Silar, BPX-70,

SP-2340.

Applications: FAME, solvants, sucre dérivatisés, composés aromatiques.

Ø int.	Film	θ limite °C	30 m	60 m
0,25 mm	0,15 µm	40 à 260	CP8821	
	0,25 µm	40 à 260	CP8822	CP8824
0,32 mm	0,15 µm	40 à 260		CP8828
	0,25 µm	40 à 260	CP8827	CP8829
0,53 mm	0,50 µm	40 à 245	CP8831	


Colonnes VF-200ms

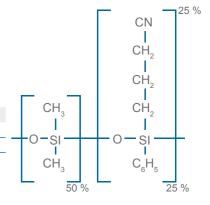
Trifluoropropyle - USP: G6

Phases similaires: Rtx-200.

Applications: Cétones, aldéhydes, composés nitro-chloro-, bromo-, et fluoro-. Composés aromatiques substitués, composés insaturés, silanes,

CPCs.

Ø int.	Film	θ limite °C	15 m	20 m	30 m	60 m
0,15 mm	0,15 µm	0 à 325/350		CP5891		
	0,60 µm	0 à 325/350		CP5892		
0,25 mm	0,10 µm	0 à 325/350			CP8857	
	0,25 µm	0 à 325/350	CP8855		CP8858	CP8861
	0,50 µm	0 à 325/350			CP8859	
	1,00 µm	0 à 325/350			CP8860	
0,32 mm	0,50 µm	0 à 325/350			CP8864	
	1,00 µm	0 à 325/350			CP8865	
0,53 mm	0,50 µm	0 à 300/325			CP8867	
	1,00 µm	0 à 300/325	CP8866		CP8868	


Colonnes DB-225ms

50 % cyanopropylphényl méthylpolysiloxane - USP : G7

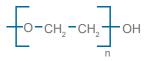
Phases similaires: SP-2330, Rtx-225, BP-225, OV-225, 007-225, AT-225.

Applications: FAME, alditol, acétates, stérols neutres.

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,25 µm	40 à 240	122-2912	122-2932	122-2962
0,32 mm	0,25 µm	40 à 240		123-2932	

Autres configurations disponibles: colonnes sur cage 5", colonnes pour module LTM et colonnes pour Intuvo sur demande.

Vinterchim

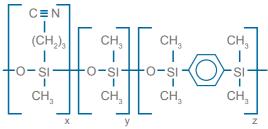


Colonnes VF-WAX ms

Carbocire - USP: G16

Phases similaires: SUPELCOWAX 10, SUPEROX II, CB-WAX, Stabilwax, BP-20, 007-CW, Carbowax, Rtx-WAX, ZB-WAX, ZB-WAX plus.

Applications: Traces de composés polaires.


Ø int.	Film	θ limite °C	10 m	15 m	20 m	25 m	30 m	50 m	60 m
0,10 mm	0,10 µm	20 à 250/260	CP9219		CP9229				
	0,20 µm	20 à 250/260	CP9218						
0,15 mm	0,15 µm	20 à 250/260		CP9201	CP9220		CP9202		
0,25 mm	0,20 µm	20 à 250/260				CP9204		CP9230	
	0,25 µm	20 à 250/260		CP9203			CP9205		CP9207
	0,50 µm	20 à 250/260		CP9221			CP9222		CP9223
	1,00 µm	20 à 240					CP9206		
0,32 mm	0,25 µm	20 à 250/260					CP9212		CP9214
	0,50 µm	20 à 250/260					CP9210		CP9225
	1,00 µm	20 à 250/260					CP9211		CP9213
0,53 mm	1,00 µm	20 à 240		CP9226			CP9215		CP9228
	2,00 µm	20 à 220					CP9216		CP9217

Colonnes VF-624ms

6 % Cyanopropyl-phényl 94 % polydiméthylsiloxane - USP : G43

Phases similaires: AT-624, Rxi-624 Sil MS, Rtx-624, PE-624, 007-624, 007-502, ZB-624.

Applications: Composés volatils.

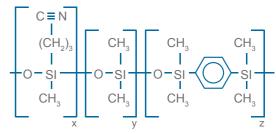
Ø int.	Film	θ limite °C	15 m	20 m	30 m	40 m	60 m	75 m
0,15 mm	0,84 µm	-40 à 280/300	CP9101	CP9100	CP9109	CP9110		
0,25 mm	1,40 µm	-40 à 280/300			CP9102		CP9103	
0,32 mm	1,80 µm	-40 à 280/300			CP9104		CP9105	
0,53 mm	3,00 µm	-40 à 265/280			CP9106		CP9107	CP9108
	1,00 µm	40 à 325/350		CP8886			CP8888	

Les colonnes VF et CP-Sil sont enroulées sur des cages EZ-Grip pour une plus grande facilité d'utilisation.

Produits Liés

Septa anti-adhérents Premium Agilent

Voir chapitre: Consommables - Accessoires GC - Septa d'injection



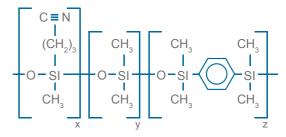
Colonnes VF-1301ms

6 % cyanopropylphényl - méthylpolysiloxane - USP: G43

Phases similaires: Rtx-1301, PE-1301.

Applications: Solvants résiduels, alcools, composés organiques volatils.

Ø int.	Film	θ limite °C	10 m	30 m	60 m
0,10 mm	1,00 µm	-40 à 280/300	CP9066	•••	•••
0,25 mm	0,25 µm	-40 à 280/300		CP9053	•••
	1,00 µm	-40 à 280/300		CP9054	CP9056
0,53 mm	1,50 µm	-40 à 280/300		CP9064	


Colonnes VF-1701ms

14 % cyanopropylphényl - méthylpolysiloxane - USP: G46

Phases similaires: SPB-1701, Rtx-1701, BP-10, OV-1701, 007-1701,

ZB-1701.

Applications: Alcools, pesticides, PCB.

Ø int.	Film θ lim	ite °C 15 m	20 m	30 m	60 m
0,15 mm	0,15 µm -20 à 2	280/300	CP9145		
	0,60 µm -20 à 2	280/300	CP9146		
0,25 mm	0,15 µm -20 à 2	280/300		CP9150	
	0,25 µm -20 à 2	280/300 CP91	8	CP9151	CP9154
	1,00 µm -20 à 2	280/300		CP9152	CP9156
0,32 mm	0,25 µm -20 à 2	280/300		CP9162	CP9165
	1,00 µm -20 à 2	280/300		CP9163	CP9166
0,53 mm	0,50 µm -20 à 2	280/300		CP9170	
	1,00 µm -20 à 2	280/300	•••	CP9171	

Autres configurations disponibles : colonnes sur cage 5", colonnes pour module LTM et colonnes pour Intuvo sur demande.

Colonnes capillaires - Agilent J&W - Colonnes polysiloxane Premium

Colonnes DB-1

100 % diméthylpolysiloxane - USP: G2

Phases similaires: Rtx-1, OV-1, SPB-1, SE-30, CP-Sil 5CB, RSL-150,

MTX-1, BP-1, 007-1, MDN-1, UptiBond 1 Premium.

Applications: Amines, hydrocarbures, pesticides, biphényls polychlorés,

phénols, composés soufrés, arômes et parfums.

O SI CH₃ 100 %

- Phase apolaire
- Excellente colonne à usage général
- Limite de température haute

- Greffée et réticulée
- Rinçable aux solvants

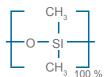
Ø int.	Film	θ limite °C	5 m	10 m/12 m*	15 m	20 m	25 m	30 m	40 m	50 m	60 m
0,05 mm	0,05 µm	-60 à 325/350		126-1012							
	0,20 µm	-60 à 325/350		126-1013							
0,10 mm	0,10 µm	-60 à 325/350		127-1012		127-1022					
	0,12 µm	-60 à 325/350	127-100A								
	0,20 µm	-60 à 325/350							127-1046		
	0,40 µm	-60 à 325/350		127-1013		127-1023			127-1043		
0,15 mm	1,20 µm	-60 à 325/350		12A-1015							
0,18 mm	0,18 µm	-60 à 325/350		121-1012		121-1022					
	0,20 µm	-60 à 325/350		121-101A							
	0,40 µm	-60 à 325/350		121-1013		121-1023			121-1043		
0,20 mm	0,33 µm	-60 à 325/350		128-1012*			128-1022	128-1034		128-1052	
0,25 mm	0,10 µm	-60 à 325/350			122-1011			122-1031			122-1061
	0,25 µm	-60 à 325/350			122-1012		122-1022	122-1032		122-1052	122-1062
	0,50 µm	-60 à 325/350						122-103E			122-106E
	1,00 µm	-60 à 325/350			122-1013			122-1033			122-1063
0,32 mm	0,10 µm	-60 à 325/350			123-1011			123-1031			123-1061
	0,12 µm	-60 à 325/350					123-1027				
	0,25 µm	-60 à 325/350			123-1012		123-1022	123-1032		123-1052	123-1062
	0,50 µm	-60 à 325:350						123-103E			123-106E
	0,52 µm	-60 à 325/350					123-1026			123-1056	
	1,00 µm	-60 à 325/350			123-1013			123-1033			123-1063
	1,05 µm	-60 à 325/350					123-102F			123-105F	
	1,20 µm	-60 à 325/350								123-105C	
	1,50 µm	-60 à 300/320						123-103B			123-106B
	2,00 µm	-60 à 280/300									123-106G
	3,00 µm	-60 à 280/300			123-1014			123-1034			123-1064
	5,00 µm	-60 à 280/300			123-1015			123-1035		123-1055	123-1065
0,45 mm	1,27 µm	-60 à 325/350						124-1032			
	2,55 µm	-60 à 260/280						124-1034			
0,53 mm	0,10µm	-60 à 340/360						125-1039			
	0,15 µm	-60 à 340/360			125-1011						
	0,25 µm	-60 à 320/340			125-101K			125-103K			
	0,50 µm	-60 à 300/320			125-1017			125-1037			
	0,88 µm	-60 à 325/350									
	1,00 µm	-60 à 300/320			125-101J		125-102J	125-103J			125-106J
	1,50 µm	-60 à 300/320			125-1012			125-1032			125-1062
	2,65 µm	-60 à 260/280	125-100B	125-10HB	•••			125-103B			•••
	3,00 µm	-60 à 260/280	•••		125-1014			125-1034			125-1064
	5,00 µm	-60 à 260/280	125-1005	125-10H5	125-1015		125-1025	125-1035		125-1055	125-1065
* 12 m	. , ,										

Analyse GC Colonnes capi

Colonnes capillaires - Agilent J&W - Colonnes polysiloxane Premium

Agilent Technologies

Colonnes HP-1


100 % Diméthylpolysiloxane - USP : G2

Phases similaires: SPB-1, Rtx-1, BP-1, OV-1, OV-101, 007-1(MS), SP-

2100, SE-30, ZB-1, AT-1, MDN-1, ZB-1.

Applications: Amines, hydrocarbures, pesticides, PCB, phénols,

composés soufrés.

Ø int.	Film	θ limite °C	12 m	17 m	20 m	25 m	50 m
0,18 mm	0,18 µm	-60 à 325/350			19091Z-577		
0,20 mm	0,11 µm	-60 à 325/350		19091Z-008		19091Z-002	19091Z-005
	0,33 µm	-60 à 325/350	19091-60312			19091Z-102	19091Z-105
	0,50 µm	-60 à 325/350				19091Z-202	19091Z-205

100 m 19091Z-530
19091Z-530
19091Z-530

^{* 7,5} m

Technical Tip

Contaminants et pureté

- Les contaminants des gaz contribuent largement à la dégradation de la colonne capillaire et au bruit du détecteur, et peuvent interférer avec les résultats chromatographiques. La concentration de ces contaminants varie en fonction de la qualité des gaz.
- Avec la phase greffée la plus apolaire qui existe, la colonne HP-1 a une stabilité thermique excellente, ce qui donne un faible ressuage, même à haute température.

Hydrocarbures et hydrocarbures halogénés

- Diminuent la sensibilité du détecteur en augmentant le bruit de fond du détecteur.
- Peuvent également causer une dérive ou une déviation de la ligne de base, des pics de contaminants ainsi qu'une augmentation du bruit de fond.

Humidité

- Peut être introduite par une mauvaise manipulation et/ou l'installation d'un raccordement.
- Une cause fréquente de dégradation de la phase stationnaire de la colonne.
- Peut endommager l'instrument.

Oxygène

- Contaminant le plus courant.
- Une cause fréquente de dégradation de la phase stationnaire de la colonne et de l'insert d'injection.
- Peut provoquer une décomposition des composés thermolabiles.
- Risque de contamination au niveau des raccords de la ligne de gaz ou à cause de l'utilisation de tubes perméables au gaz.

Analyse GC Colonnes capillaires - Agilent J&W - Colonnes polysiloxane Premium

Colonnes CP-Sil 5 CB

100 % diméthylpolysiloxane - USP: G1, G2

Phases similaires: SPB-1, Rtx-1, BP-1, OV-1, OV-101, 007-1(MS), SP-

2100, SE-30, ZB-1, AT-1, MDN-1, ZB-1.

Applications: Alcools, aldéhydes, amines, glycols, cétones, stéroïdes,

solvants.

Ø int.	Film	θ limite °C	5 m/3 m*	10 m	12 m	15 m	20 m	25 m	30 m	50 m	60 m	100 m
0.10 mm	0,10 µm	-60 à 330/350		CP7311								
., .		-60 à 330/350	CP7300	CP7310								
	0,40 µm	-60 à 330/350										
0,15 mm	0,12 µm	-60 à 330/350		CP7684				CP7694				
	0,15 µm	-60 à 330/350				CP7687						
	1,20 µm	-60 à 330/350						CP7693				
	2,00 µm	-60 à 330/350		CP7682				CP7692				
0,20 mm	0,33 µm	-60 à 330/350						CP7622				
0,25 mm	0,10 µm	-60 à 325/350							CP8710			
	0,12 µm	-60 à 325/350		CP7700				CP7710		CP7720		
	0,25 µm	-60 à 325/350				CP8510		CP7441	CP8741	CP7443	CP8743	
	0,40 µm	-60 à 325/350						CP7709		CP7719		
	1,00 µm	-60 à 325/350							CP8770		CP8780	
	1,20 µm	-60 à 325/350						CP7670				
0,32 mm	0,10 µm	-60 à 325/350				CP8529			CP8740			
	0,12 µm	-60 à 325/350		CP7730				CP7740		CP7750		
	0,25 µm	-60 à 325/350				CP8530		CP7442	CP8742	CP7444	CP8744	
	0,40 µm	-60 à 325/350						CP7739		CP7749		
	0,52 µm	-60 à 325/350						CP8430				
	1,00 µm	-60 à 325/350				CP8540			CP8760		CP8870	
	1,20 µm	-60 à 325/350	CP1310*	CP7758				CP7760		CP7770		
	3,00 µm	-60 à 325/350				CP8550			CP8687		CP8689	
	5,00 µm	-60 à 325/350				CP8560		CP7680	CP8688	CP7690	CP8690	
0,53 mm	0,50 µm	-60 à 325/350										CP7608
	1,00 µm	-60 à 325/350		CP7625				CP7635		CP7695		
	1,50 µm	-60 à 325/350				CP8674			CP8735		CP8799	
	2,00 µm	-60 à 325/350		CP7620				CP7630	CP8730	CP7640		
	3,00 µm	-60 à 325/350				CP8675			CP8677			
	5,00 µm	-60 à 325/350		CP7645		CP8676	CP8774	CP7675	CP8775	CP7685	CP8685	CP7688

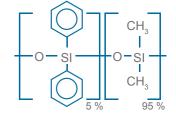
^{* 3} m

Autres configurations disponibles : colonnes sur cage 5", colonnes pour module LTM et colonnes pour Intuvo sur demande.

Analyse GCColonnes capi

Colonnes capillaires - Agilent J&W - Colonnes polysiloxane Premium

Agilent Technologies


Colonnes DB5

5 % phényl méthylpolysiloxane - USP : G27

Phases similaires: UptiBond 5 Premium, Rtx-5, SPB-5, PTE-5, CP-Sil 8CB, SE-54, DB-5ht, DB-5.625, Mtx-5, OV-5, SE-52, GC-5, 007-2, RSL-200, MDN-5, BP-5.

Applications: Alcaloïdes, drogues, esters méthyliques d'acides gras, composés halogénés, composés aromatiques, semi-volatils, pesticides, herbicides.

- Phase apolaire
- Excellente colonne à usage général

- Greffée et reticulée
- Rinçage aux solvants

Ø int.	Film	θ limite °C	10 m	12 m	15 m	20 m	25 m	30 m	40 m	50 m	60 m
0.10 mm		-60 à 325/350	127-5012			127-5022					
		-60 à 325/350	127-501E								
	_ <u>'</u> _	-60 à 325/350	127-501N								
		-60 à 325/350	127-5013			127-5023					
0.15 mm	· ·	-60 à 300/320	12A-5015								
		-60 à 325/350	121-5012			121-5022			121-5042		
•	0,40 µm	-60 à 325/350	121-5013			121-5023					
0,20 mm	0,20 µm	-60 à 325/350			128-50H7						
	0,33 µm	-60 à 325/350		128-5012			128-5022			128-5052	
0,25 mm	0,10 µm	-60 à 325/350			122-5011			122-5031			122-5061
	0,25 µm	-60 à 325/350			122-5012		122-5022	122-5032		122-5052	122-5062
	0,50 µm	-60 à 325/350			122-501E			122-503E			122-506E
	1,00 µm	-60 à 325/350			122-5013			122-5033			122-5063
0,32 mm	0,10 µm	-60 à 325/350			123-5011			123-5031			
	0,17 µm	-60 à 325/360					123-502D				
	0,25 µm	-60 à 325/360			123-5012		123-5022	123-5032		123-5052	123-5062
	0,50 µm	-60 à 325/360	123-500E					123-503E			
	0,52 µm	-60 à 325/360					123-5026			123-5056	
	1,00 µm	-60 à 325/360			123-5013			123-5033		123-5053	123-5063
	1,05 µm	-60 à 325/360					123-502F				
	1,50 µm	-60 à 325/360						123-503B			
0,45 mm*	0,42 µm	-60 à 300/320						124-5037			
	1,27 µm	-60 à 300/320						124-5032			
0,53 mm	0,25 µm	-60 à 300/320			125-501K			125-503K			
	0,50 µm	-60 à 300/320			125-5017			125-5037			
	0,88 µm	-60 à 300/320						125-503D			
	1,00 µm	-60 à 300/320			125-501J			125-503J			
	1,50 µm	-60 à 300/320			125-5012			125-5032			125-5062
	2,65 µm	-60 à 260/280	125-50HB					125-503B			
	3,00 µm	-60 à 260/280						125-5034			
	5,00 µm	-60 à 260/280					125-5025	125-5035			125-5065

^{*} Les colonnes MS 0,45 mm i.d. ne nécessitent pas de ferrules spéciales / ** Disponibles également en tube inox protégé DB-ProSteel. Voir page correspondante.

Contrôlez facilement et avec précision vos débits de gaz vecteurs.

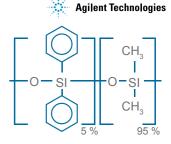
Fonctionnalité unique: pas de retour de votre débitmètre pour recalibration.

Vous effectuez vous-même la validation annuelle de votre débitmètre, par simple remplacement de la cartouche précalibrée.

Débitmètre électronique disponible au chapitre:

Consommables - Accessoires GC - Débitmètres GC

Colonnes capillaires - Agilent J&W - Colonnes polysiloxane Premium


Colonnes HP5

5 % phényl - méthylpolysiloxane - USP: G27

Phases similaires: SPB-5, Rtx-5, BP-5, OV-5, 007-2(MPS-5), SE-52,

SE-54, XTI-5, PTE-5, ZB-5, AT-5, MDN-5, ZB-5.

Applications: Usage général.

Ø int.	Film	θ limite °C	10 m	12 m	15 m*	20 m	25 m	30 m	50 m	60 m
0,18 mm	0,18 µm	-60 à 325/350				19091J-577				
0,20 mm	0,11 µm	-60 à 325/350					19091J-002		19091J-005	
	0,33 µm	-60 à 325/350		19091J-101	19091J-108*		19091J-102		19091J-105	
	0,50 µm	-60 à 325/350					19091J-202		19091J-205	
0,25 mm	0,10 µm	-60 à 325/350						19091J-333		
	0,25 µm	-60 à 325/350			19091J-431			19091J-433		19091J-436
	1,00 µm	-60 à 325/350			19091J-231			19091J-233		
0,32 mm	0,10 µm	-60 à 325/350						19091J-313		
	0,17 µm	-60 à 325/350					19091J-012		19091J-015	
	0,25 µm	-60 à 325/350			19091J-411			19091J-413		
	0,50 µm	-60 à 325/350						19091J-113		
	0,52 µm	-60 à 325/350					19091J-112		19091J-115	19091J-416
	1,00 µm	-60 à 325/350						19091J-213		19091J-216
	1,05 µm	-60 à 325/350					19091J-212		19091J-215	
0,53 mm	0,88 µm	-60 à 300/320						19095J-023		
	1,50 µm	-60 à 300/320			19095J-321			19095J-323		
	2,65 µm	-60 à 260/280	19095J-121					19095J-123		
	5,00 µm	-60 à 260/280			19095J-621			19095J-623		
+47										

^{*17} m

Autres configurations disponibles : colonnes sur cage 5", colonnes pour module LTM et colonnes pour Intuvo sur demande.

Technical Tip

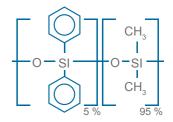
Pureté et sélection des gaz

Il est recommandé d'utiliser des gaz vecteurs et de détection d'une pureté de 99,9995 %. L'air doit être de grade zéro ou supérieur. Il est également recommandé d'utiliser des piéges à hydrocarbures, humidité et oxygène.

Voir chapitre: Consommables - Accessoires GC - Filtres gaz sur embase

Analyse GC Colonnes cap

Colonnes capillaires - Agilent J&W - Colonnes polysiloxane Premium


Agilent Technologies

Colonnes CP-SIL 8CB

5 % phényl méthylpolysiloxane - USP : G27

Phases similaires: SPB-5, Rtx-5, BP-5, OV-5, 007-2(MPS-5), SE-52,

SE-54, XTI-5, PTE-5, ZB-5, AT-5, MDN-5, ZB-5. **Applications**: Antidépresseurs, herbicides, pesticides.

Ø int.	Film	θ limite °C	10 m	15 m	25 m	30 m	50 m	60 m	100 m
0,15 mm	0,12 µm	-60 à 330/350	CP7884						
	1,20 µm	-60 à 325/350			CP7895				
	2,00 µm	-60 à 325/350			CP7896				
0,25 mm	0,12 µm	-60 à 330/350			CP7711		CP7721		
	0,25 µm	-60 à 330/350		CP8511	CP7451	CP8751	CP7453	CP8753	
	0,40 µm	-60 à 325/350					CP7769		
	1,00 µm	-60 à 325/350		CP8521		CP8771		CP8781	
	1,20 µm	-60 à 325/350			CP7671				
0,32 mm	0,10 µm	-60 à 325/350				CP8791			
	0,12 µm	-60 à 325/350	CP7731		CP7741		CP7751		
	0,25 µm	-60 à 325/350		CP8531	CP7452	CP8752	CP7454	CP8754	
	0,40 µm	-60 à 325/350			CP7779		CP7789		
	0,52 µm	-60 à 325/350			CP8431				
	1,00 µm	-60 à 325/350		CP8541		CP8761		CP8871	
	1,20 µm	-60 à 325/350			CP7761		CP7771		
	5,00 µm	-60 à 300/325	CP8014		CP7681		CP7691		
0,53 mm	0,50 µm	-60 à 325/350				CP8716			
	1,00 µm	-60 à 315/330			CP7636		CP7696		
	1,50 µm	-60 à 305/330		CP8678		CP8736		CP8796	
	2,00 µm	-60 à 305/330	CP7621		CP7631		CP7641		
	5,00 µm		CP7646		CP7656	CP8756	CP7666		CP7676
	5,00 µm	-60 à 290-325	CP7646		CP7656	CP8756	CP7666		CP76

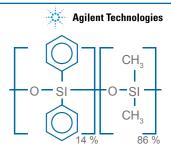
Autres configurations disponibles: colonnes sur cage 5", colonnes pour module LTM et colonnes pour Intuvo sur demande.

Les colonnes VF et CP-Sil sont enroulées sur des cages EZ-Grip pour une plus grande facilité d'utilisation.

Produits Liés

Contrôlez les performances de votre colonne grâce aux mélanges test pour colonnes.

Nous consulter pour déterminer le mélange adéquat.



Colonnes CP-Sil 13CB

14 % Phényl - 86 % Diméthylpolysiloxane - USP: G28, G32

Phases similaires: Rtx-20.

Applications: Amines, composés halogénés, herbicides, pesticides, PCB, phénols, Esters de phtalates, stéroîdes, sucres et tranquillisants.

Ø int.	Film	θ limite °C	12 m	25 m	50 m
0,15 mm	0,40 µm	-25 à 300/330		CP7813	
	0,63 µm	-25 à 300/330	CP740510		
0,25 mm	0,20 µm	-25 à 300/330		CP7906	CP7907
	0,40 µm	-25 à 300/330			CP7917
	1,20 µm	-25 à 300/330		CP7977	
0,32 mm	0,20 µm	-25 à 300/330		CP7926	
	0,40 µm	-25 à 300/330	•••	CP7936	CP7937
	1,20 µm	-25 à 300/330		CP7946	CP7947
0,53 mm	1,00 µm	-25 à 300/330	•••	CP7619	CP7629
	2,00 µm	-25 à 300/330	•••	CP7649	CP7659

Colonnes DB-35

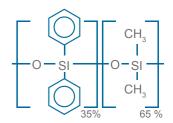
35 % phényl méthylpolysiloxane - USP : G42

Phases similaires: RTX-35, SPB-35, AT-35, BPX35, HP-35. Applications: Médicaments, drogues, pesticides, PCB.

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,25 µm	40 à 300/320		122-1932	122-1962
0,32 mm	0,25 µm	40 à 300/320		123-1932	
	0,50 µm	40 à 300/320		123-1933	
	1,50 µm	40 à 280/300			123-1968
0,53 mm	0,50 µm	40 à 280/300		125-1937	
	1.00 um	40 à 280/300	125-1912	125-1932	

Colonnes HP-35

35 % phényl méthylpolysiloxane - USP: G42


Phases similaires: Rtx-35ms, Rxi-35Sil MS, SPB-35, AT-35, Sup-Herb,

MDN-35, BPX-34, ZB-35, ZB-35 ht.

Applications: PCB, amines, pesticides, produits pharmaceutiques.

La phase HP-35 est moins polaire que la phase DB-35.

Ø int.	Film	θ limite °C	15 m	30 m
0,25 mm	0,25 µm	40 à 300/320	19091G-131	19091G-133
0,32 mm	0,25 µm	40 à 300/320		19091G-113
	0.50 um	40 à 300/320		19091G-213

Analyse GC

Colonnes capillaires - Agilent J&W - Colonnes polysiloxane Premium

SI

CH,

Agilent Technologies

Colonnes DB-17

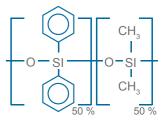
50 % phényl méthylpolysiloxane - USP : G3

Phases similaires: UptiBond 17, Rtx-50, SP-2250, DB-17ht, SPB-50, 007-17,

CP-Sil 19, CP-Sil 24CBRSL-300, AT-50, OV-17, BPX-50. Applications: Drogues, glycols, pesticides, stéroïdes.

• Analyse de pesticides organochlorés

•		-						
Ø int.	Film	θ limite °C	5 m	10 m	15 m	20 m	30 m	60 m
0,10 mm	0,10 µm	40 à 280/300		127-1712		127-1722		
	0,20 µm	40 à 280/300		127-1713				
0,18 mm	0,18 µm	40 à 280/300				121-1722		
	0,30 µm	40 à 280/300				121-1723		
0,25 mm	0,15 µm	40 à 280/300					122-1731	
	0,25 µm	40 à 280/300			122-1712		122-1732	122-1762
	0,50 µm	40 à 280/300			122-1713		122-1733	
0,32 mm	0,15 µm	40 à 280/300			123-1711		123-1731	
	0,25 µm	40 à 280/300			123-1712		123-1732	123-1762
	0,50 µm	40 à 280/300			123-1713		123-1733	
0,53 mm	0,25 µm	40 à 260/280			125-1711		125-1731	
	0,50 µm	40 à 260/280			125-1717		125-1737	
	1,00 µm	40 à 260/280			125-1712		125-1732	125-1762
	1,50 µm	40 à 260/280			125-1713		125-1733	
	2,00 µm	40 à 260/280	125-1704					

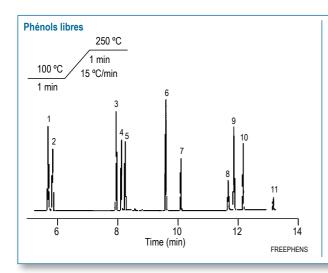

Colonnes HP-50+

50% phényl méthylpolysiloxane - USP: G3

Phases similaires: DB-17, Rtx-50, SP-2250, DB-17ht, SPB-50, 007-17,

CP-Sil 19, CP-Sil 24CBRSL-300, AT-50, OV-17, BPX-50. Applications: Drogues, glycols, pesticides, stéroïdes.

Film	θ limite °C	15 m	30 m	60 m
0,15 µm	40 à 280/300		19091L-333	
0,25 µm	40 à 280/300	19091L-431	19091L-433	
0,50 µm	40 à 280/300		19091L-133	
0,25 µm	40 à 280/300		19091L-413	19091L-416
0,50 µm	40 à 280/300		19091L-113	
0,50 µm	40 à 260/280		19095L-523	
1,00 µm	40 à 260/280	19095L-021	19095L-023	
3,00 µm	-60 à 260/280			125-5034
5,00 µm	-60 à 260/280		125-5025	125-5035
	0,15 μm 0,25 μm 0,50 μm 0,25 μm 0,50 μm 0,50 μm 1,00 μm 3,00 μm	0,15 µm 40 à 280/300 0,25 µm 40 à 280/300 0,50 µm 40 à 280/300 0,25 µm 40 à 280/300 0,50 µm 40 à 280/300 0,50 µm 40 à 260/280 1,00 µm 40 à 260/280 3,00 µm -60 à 260/280	0,15 μm 40 à 280/300 0,25 μm 40 à 280/300 19091L-431 0,50 μm 40 à 280/300 0,25 μm 40 à 280/300 0,50 μm 40 à 280/300 0,50 μm 40 à 260/280 1,00 μm 40 à 260/280 19095L-021 3,00 μm -60 à 260/280	$\begin{array}{cccccccccccccccccccccccccccccccccccc$



Autres configurations disponibles: colonnes sur cage 5", colonnes pour module LTM et colonnes pour Intuvo sur demande.

Colonnes capillaires - Agilent J&W - Colonnes polysiloxane Premium

Colonne: HP-50+ 19091I-433 (30 m x 0,25 mm, 0,25 µm)

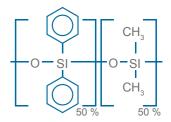
Gaz vecteur : Hydrogène, débit constant à 45 cm/s

Injection: Rapport de division, 100:1

Détecteur : FID. 300 °C

- 1. Phénol
- 2. 2-Chlorophénol
- 3. 2,4-Diméthylphénol
- 4. 2-Nitrophénol
- 5. 2,4-Dichlorophénol 6. 4-Chloro-3-méthylphénol
- 7. 2,4,6-Trichlorophénol
- 8. 2,4-Dinitrophénol
- 9. 4-Nitrophénol
- 10. 2-Méthyl-4,6-dinitrophénol
- 11. Pentachlorophénol

CP-Sil 24CB

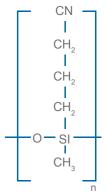

50 % phényl méthylpolysiloxane - USP : G3

Phases similaires: OV17, Rtx-50, 007-17(MPS-50), SP-2250, SPB-50,

ZB-50, AT-50.

Applications: Antidépresseurs, herbicides, pesticides.

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,25 µm	40 à 280/300	CP7820	CP7821	CP7822
	0,50 µm	40 à 280/300		CP7824	
0,32 mm	0,25 µm	40 à 300/320	CP7830	CP7831	CP7832
	0,50 µm	40 à 300/320		CP7834	
0,53 mm	1,00 µm	40 à 300/320	CP7870	CP7871	

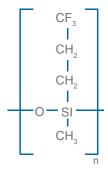

Colonnes DB-23

50 % cyanopropyl méthylpolysiloxane - USP : G5

Phases similaires: RTX-2330, 007-23, BPX70, VF-23ms.

Applications: sters méthyliques d'acides gras (séparation cis/trans).

Ø int.	Film	θ limite °C	15 m	20 m	30 m	60 m
0,18 mm	0,20 µm	40 à 250/260		121-2323		
0,25 mm	0,15 µm	40 à 250/260			122-2331	122-2361
	0,25 µm	40 à 250/260	122-2312		122-2332	122-2362
0,32 mm	0,25 µm	40 à 250/260			123-2332	123-2362
0,53 mm	0,50 µm	40 à 230/240	125-2312		125-2332	

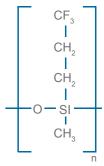

Colonnes DB-200

35 % trifluoropropyl méthylpolysiloxane - USP : G6

Phases similaires: RTX-200, VF-200ms.

Applications: Solvants résiduels, pesticides, herbicides.

Ø int.	Film	θ limite °C	30 m
0,25 mm	0,25 µm	30 à 300/320	122-2032
	0,50 µm	30 à 300/320	122-2033
0,32 mm	0,25 µm	30 à 300/320	123-2032
	0,50 µm	30 à 300/320	123-2033
0,53 mm	1,00 µm	30 à 280/300	125-2032

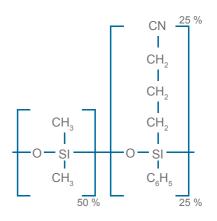

Colonnes DB-210 (remplace HP-210)

50 % trifluoropropyl méthylpolysiloxane - USP : G6

Phases similaires: SP2401.

Applications: Méthodes EPA 8140 et 609.

Ø int.	Film	θ limite °C	15 m	30 m
0,25 mm	0,25 µm	45 à 240/260	122-0212	122-0232
	0,50 µm	45 à 240/260		122-0233
0,32 mm	0,25 µm	45 à 240/260		123-0232
	0,50 µm	45 à 240/260	123-0213	123-0233
0,53 mm	1,00 µm	45 à 220/240	125-0212	125-0232


Colonnes DB-225

50 % cyanopropylphényl diméthylpolysiloxane - USP : G7

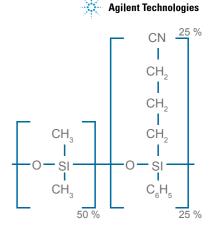
Phases similaires: UptiBond 225

SP-2330, CPSil43CB, OV-225, RTX-225, BP-225, OV-225, AT225. Applications: Esters méthyliques d'acides gras, acétates d'alditol, stérols.

Ø int.	Film	θ limite °C	15 m	20 m	30 m
0,10 mm	0,10 µm	40 à 220/240		127-2222	
0,18 mm	0,20 µm	40 à 220/240		121-2223	
0,25 mm	0,15 µm	40 à 220/240			122-2231
	0,25 µm	40 à 220/240	122-2212		122-2232
0,32 mm	0,25 µm	40 à 220/240			123-2232
0,53 mm	0,50 µm	40 à 200/220			125-2237
	1,00 µm	40 à 200/220	125-2212		125-2232

Autres configurations disponibles: colonnes sur cage 5", colonnes pour module LTM et colonnes pour Intuvo sur demande.

Colonnes capillaires - Agilent J&W - Colonnes polysiloxane Premium

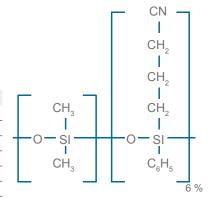

Colonnes CP-Sil 43CB

25 % cyanopropyl 25 % phényl 50 % diméthylpolysiloxane - USP : G19

Phases similaires: SP-2330, Rtx-225, BP-225, OV-225, 007-225, AT-225.

Applications: FAME, composés halogénés, phénols, pyridine.

Ø int.	Film	θ limite °C	25 m	50 m
0,25 mm	0,20 µm	45 à 200/225	CP7715	CP7725
0.32 mm	0.20 um	45 à 200/225	CP7745	


Colonnes DB-1301 (Remplacement exact des HP-1301)

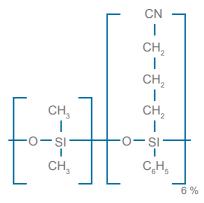
6 % cyanopropylphényl méthylpolysiloxane - USP : G43

Phases similaires: UptiBond 1301

RTX-1301, PE-1301, CP-1301, VF-1301ms. **Applications**: PCB, alcools, pesticides, COV.

Ø int.	Film	θ limite °C	10 m	15 m	30 m	60 m
0,25 mm	0,25 µm	-20 à 280/300			122-1332	122-1362
	1,00 µm	-20 à 280/300			122-1333	122-1363
0,32 mm	0,25 µm	-20 à 280/300			123-1332	
	1,00 µm	-20 à 280/300			123-1333	123-1363
0,53 mm	1,00 µm	-20 à 260/280		125-1312	125-1332	
	1,50 µm	-20 à 260/280			125-1333	

Colonnes CP-1301


6 % cyanopropylphényl - méthylpolysiloxane - USP : G43

Phases similaires: UptiBond 1301

RTX-1301, PE-1301, CP-1301, VF-1301ms.

Applications: PCB, alcools, pesticides, COV, produits pharmaceutiques.

Ø int.	Film	θ limite °C	30 m	60 m
0,25 mm	1,00 µm	-20 à 280/300		CP8605
0,32 mm	0,25 µm	-20 à 280/300	CP8607	
	1,00 µm	-20 à 280/300	CP8610	
0,53 mm	1,00 µm	-20 à 260/280	CP8613	

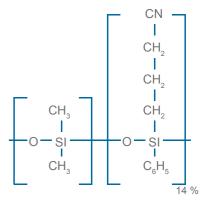
Colonnes capillaires - Agilent J&W - Colonnes polysiloxane Premium

Agilent Technologies

Colonnes DB-1701

14 % cyanopropylphényl méthylpolysiloxane - USP : G46

Phases similaires: UptiBond1701, SPB-1701, CPSil19CB, RTX1701,


BP-10, VF-1701ms, ZB-1701.

Applications: Pesticides, herbicides, sucres TMS, PCB.

Remplacement exact des HP-1701.

Autres configurations disponibles: colonnes sur cage 5", colonnes pour module LTM et colonnes pour Intuvo sur demande.

Ø int.	Film	θ limite °C	10 m	15 m	20 m	30 m	50 m	60 m
0,10 mm	0,10 µm	-20 à 280/300			127-0722			
	0,40 µm	-20 à 280/300	127-0723					
0,18 mm	0,18 µm	-20 à 280/300			121-0722			
	0,40 µm	-20 à 280/300	121-0713					
0,25 mm	0,15 µm	-20 à 280/300				122-0731		122-0761
	0,25 µm	-20 à 280/300		122-0712		122-0732		122-0762
	0,50 µm	-20 à 280/300						122-0766
	1,00 µm	-20 à 280/300		122-0713		122-0733		122-0763
0,32 mm	0,15 µm	-20 à 280/300				123-0731		
	0,25 µm	-20 à 280/300		123-0712		123-0732		123-0762
	1,00 µm	-20 à 280/300		123-0713		123-0733	123-0753	123-0763
0,53 mm	0,25 µm	-20 à 260/280				125-0731		
	0,50 µm	-20 à 260/280				125-0737		
	1,00 µm	-20 à 260/280		125-0712		125-0732		125-0762
	1,50 µm	-20 à 260/280				125-0733		

Technical Tip

Pour l'analyse des polluants volatils prioritaires et des solvants résiduels, Agilent propose également les colonnes DB-624 et DB-624UI.

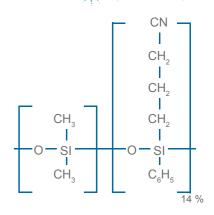
Produits Liés

Etalons COV, Phénols, HAP, Pesticides, PCB, PBDE, Allergènes, PIANO, Lipides, Glucérides

Voir Chapitre **Etalons**- Standards de calibration - Organiques

Colonnes capillaires - Agilent J&W - Colonnes polysiloxane Premium

Colonnes CP-Sil 19CB


14 % cyanopropylphényl méthylpolysiloxane - USP : G46

Phases similaires : SPB-1701, Rtx-1701, BP-10, OV-1701, 007-1701,

ZB-1701.

Applications: Analyses environnementales, agroalimentaires et

pharmaceutiques.

Ø int.	Film	θ limite °C	10 m	15 m	25 m	30 m	50 m	60 m
0,15 mm	0,50 µm	-25 à 275/300			CP7340			
0,25 mm	0,20 µm	-25 à 275/300	CP7702		CP7712		CP7722	
	0,25 µm	-25 à 275/300				CP8712		CP8722
	0,40 µm	-25 à 275/300			CP7809			
	1,00 µm	-25 à 275/300				CP8562		
	1,20 µm	-25 à 275/300			CP7672			
0,32 mm	0,20 µm	-25 à 275/300	CP7732		CP7742		CP7752	
	0,25 µm	-25 à 275/300		CP8542		CP8842		
	0,40 µm	-25 à 275/300			CP7829		CP7839	
	1,00 µm	-25 à 275/300				CP8762		CP8772
	1,20 µm	-25 à 275/300			CP7762		CP7772	
0,53 mm	1,00 µm	-25 à 275/300	CP7627		CP7637	CP8737	CP7697	
	2,00 µm	-25 à 275/300	CP7647		CP7657		CP7667	

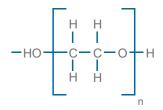
Les colonnes VF et CP-Sil sont enroulées sur des cages EZ-Grip pour une plus grande facilité d'utilisation.

Produits Liés

Flacons d'échantillonnage de 2 à 60 mL : prélevez et stockez vos échantillons de façon fiable. Retrouvez notre gamme complète au chapitre :

Flacons & Capsules - Uptivial™ - Flacons d'échantillonnage

Colonnes DB-WAX (Remplacement exact de la HP-WAX)


Polyéthylène Glycol - USP : G26

Phases similaires: UptiBond WAX

UB-WAX, Rtx-WAX, ZB-WAX, VF-WAXms, BP-20, supelcowax10,

CPWAX-52CB etc...

Applications: Solvants, glycols, alcools.

Ø int.	Film	θ limite °C	10 m	15 m	20 m	25 m	30 m	40 m	50 m	60 m
0,05 mm	0,05 µm	20 à 250/260	126-7012							
	0,10 µm	20 à 240/250	126-7013							
0,10 mm	0,10 µm	20 à 250/260	127-7012		127-7022					
	0,20 µm	20 à 240/250	127-7013		127-7023					
0,18 mm	0,18 µm	20 à 240/250	121-7012		121-7022			121-7042		
	0,30 µm	20 à 240/250			121-7023			121-7043		
0,20 mm	0,20 µm	20 à 250/260				128-7022	128-7032		128-7052	
0,25 mm	0,15 µm	20 à 250/260					122-7031			122-7061
	0,25 µm	20 à 250/260		122-7012			122-7032			122-7062
	0,50 µm	20 à 240/250		122-7013			122-7033			122-7063
0,32 mm	0,15 µm	20 à 250/260					123-7031			
	0,25 µm	20 à 250/260		123-7012			123-7032			123-7062
	0,50 µm	20 à 240/250		123-7013			123-7033			123-7063
0,45 mm	0,85 µm	20 à 230/240					124-7032			
0,53 mm	0,25 µm	20 à 230/240					125-7031			
	0,50 µm	20 à 230/240		125-7017			125-7037			
	1,00 µm	20 à 230/240		125-7012			125-7032			125-7062

La DB-WAXFF est une DB-WAX spécialement testée avec une excellente reproductibilité pour l'analyse des parfums.

Colonnes HP-INNOWAX I

Polyéthylène glycol - USP: G16

Phases similaires: Stabilwax, Supelcowax-10, CP Wax 52CBI, Carbowax

PEG 20M, BP-20, 007-CW, DB-WAXetr.

Applications: Alcools, aromatiques, huiles essentielles, solvants.

La phase HP-INNOWax I est un polyéthylèneglycol greffé/réticulé d'une grande inertie.

Les avantages sont la séparation des acides gras libres jusqu'à C24 et autres acides organiques, la capacité à accepter des injections répétées d'eau et de solvants organiques et l'analyse des aldéhydes, des alcools et des acides sans acidification.

	ı
⊛	ı
	ı
	ı
	ı
	ı
	ı
	ı
	ı
	ı
	ı
	ı
	ı
	ı
	ı
T. C.	ı
	ı
	ı
	ı
	ı
	ı
	ı
$1 \wedge \Box$	ı
	ı
	ı
	ı

Ø int.	Film	θ limite °C	5 m	15 m	20 m	25 m	30 m	50 m	60 m
0,18 mm	0,18 µm	40 à 260/270			19091N-577I				
0,20 mm	0,20 µm	40 à 260/270				19091N-102I		19091N-105I	
	0,40 µm	40 à 260/270						19091N-205I	
0,25 mm	0,15 µm	40 à 260/270	19091N-030I				19091N-033I		
	0,25 µm	40 à 260/270		19091N-131I			19091N-133I		19091N-136I
	0,50 µm	40 à 260/270		19091N-231I			19091N-233I		19091N-236I
0,32 mm	0,15 µm	40 à 260/270					19091N-013I		
	0,25 µm	40 à 260/270		19091N-111I			19091N-113I		19091N-116I
	0,50 µm	40 à 260/270					19091N-213I		19091N-216I
0,53 mm	1,00 µm	40 à 240/250		19095N-121I			19095N-123I		19095N-126I

Colonnes DB-HeavyWAX

Polyéthylène Glycol HT - USP: G26

Analyse polaire à haute température

Grande stabilité thermique : jusqu'à 280°C en isotherme et 290°C en programmation de température

- Rapidité d'analyse : diminution du temps grâce à l'augmentation de la température d'analyse.
- Stabilité des temps de rétention et augmentation de la durée de vie des colonnes.
- Réduction de l'effet mémoire et des pics fantômes : conditionnement possible à plus haute température.

Ø int.	Film	θ limite °C	10 m	15 m	20 m	25 m	30 m	60 m
0,10 mm	0,10 µm	40 à 280/290	127-7112					
0,18 mm	0,18 µm	40 à 280/290	121-7112		121-7122			
0,25 mm	0,20 µm	40 à 280/290				122-7127		122-7157*
	0,25 µm	40 à 280/290		122-7112			122-7132	122-7162
	0,50 µm	40 à 270/280					122-7133	122-7163
0,32 mm	0,20 µm	40 à 280/290						123-7157*
	0,25 µm	40 à 280/290		123-7112			123-7132	123-7162
	0,50 µm	40 à 270/280					123-7133	123-7163

^{* 50} m

DB-WAXetr

Polyéthylène glycol - USP: G16

Phases similaires: SUPELCOWAX 10, SUPEROX II, CB-WAX, Stabilwax, BP-20, 007-CW, Carbowax, Rtx-WAX, ZB-WAX, ZB-WAX plus. Applications: Alcools, aldéhydes, cétones, esters, huiles essentielles.

ETR : gamme de température étendue (Extended Temperature Range)

	110	Ĭ
		_ ''
<u> </u>		

Ø int.	Film	θ limite °C	15 m	25 m	30 m	50 m	60 m
0,20 mm	0,40 µm	30 à 250/260		128-7323			
0,25 mm	0,25 µm				122-7332		122-7362
	0,50 µm	30 à 250/260			122-7333		122-7363
0,32 mm	0,25 µm		123-7312		123-7332		123-7362
	0,50 µm	30 à 250/260			123-7333		123-7363
	1,00 µm	30 à 250/260	123-7314		123-7334	123-7354	123-7364
0,53 mm	1,00 µm	30 à 250/260	125-7312		125-7332		125-7362
	1,50 µm	30 à 230/240			125-7333		
	2,00 µm	50 à 230/250	125-7314		125-7334		

Colonnes CP-Wax 52 CB I

Polyéthylène Glycol - USP: G16

Phases similaires: SUPELCOWAX 10, SUPEROX II, CB-WAX, Stabilwax, BP-20, 007-CW, Carbowax, HP-INNOWax, Rtx-WAX, ZB-WAX, ZB-WAX+.

Applications: Alcools, aldéhydes, aromatiques, esters, arômes et parfums, glycols, cétones, HAP, phénols, solvants, composés soufrés.

-110-	H H H	L.,
-HO-	—С—С—О- Н Н	Η
	_	n

Film	θ limite °C	10 m	15 m	20 m	25 m	30 m	50 m	60 m	100 m
0,10 µm	20 à 250/265	CP7334I							
0,20 µm	20 à 250/265	CP7335I		CP7345I					
0,12 µm	20 à 250/265		CP7791I						
0,25 µm	20 à 250/265				CP7792I				
0,20 µm	20 à 250/265					CP7775I	CP7785I		
0,15 µm	20 à 250/265					CP8745I			
0,20 µm	20 à 250/265	CP7703I			CP7713I		CP7723I		
0,25 µm	20 à 250/265		CP8513I			CP8713I		CP8723I	
0,50 µm	20 à 250/265					CP8746I		CP8748I	
1,20 µm	20 à 250/265				CP7673I				
0,15 µm	20 à 250/265					CP8757I			
0,20 µm	20 à 250/265				CP7743I		CP7753I		
0,25 µm	20 à 250/265		CP8543I			CP8843I		CP8853I	
0,40 µm	20 à 250/265				CP7879I		CP7889I		
0,50 µm	20 à 250/265		CP8553I			CP8763I		CP8773I	
1,20 µm	20 à 250/265				CP7763I		CP7773I	CP8073I	
1,00 µm	20 à 250/265	CP7628I	CP8718I		CP7638I	CP8738I	CP7698I	CP8798I	
2,00 µm	20 à 250/265	CP7648I			CP7658I		CP7668I		CP7678I
_	0,10 µm 0,20 µm 0,12 µm 0,25 µm 0,20 µm 0,25 µm 0,25 µm 0,50 µm 1,20 µm 0,15 µm 0,20 µm 0,20 µm 0,40 µm 0,40 µm 1,00 µm 1,00 µm	0,10 μm 20 à 250/265 0,20 μm 20 à 250/265 0,12 μm 20 à 250/265 0,25 μm 20 à 250/265 0,20 μm 20 à 250/265 0,20 μm 20 à 250/265 0,20 μm 20 à 250/265 0,20 μm 20 à 250/265 0,25 μm 20 à 250/265 1,20 μm 20 à 250/265 0,15 μm 20 à 250/265 1,20 μm 20 à 250/265 0,20 μm 20 à 250/265 0,20 μm 20 à 250/265 0,20 μm 20 à 250/265 0,25 μm 20 à 250/265 0,25 μm 20 à 250/265 0,25 μm 20 à 250/265 0,40 μm 20 à 250/265 1,20 μm 20 à 250/265 1,20 μm 20 à 250/265	0,10 µm 20 à 250/265	0,10 μm 20 à 250/265 CP7334I 0,20 μm 20 à 250/265 CP7335I 0,12 μm 20 à 250/265 CP7791I 0,25 μm 20 à 250/265 0,20 μm 20 à 250/265 0,15 μm 20 à 250/265 0,20 μm 20 à 250/265 CP8513I 0,50 μm 20 à 250/265 CP8513I 0,50 μm 20 à 250/265 1,20 μm 20 à 250/265 0,15 μm 20 à 250/265 0,20 μm 20 à 250/265 0,20 μm 20 à 250/265 0,25 μm 20 à 250/265 0,40 μm 20 à 250/265 CP8543I 0,40 μm 20 à 250/265 CP8553I 1,20 μm 20 à 250/265 CP8553I 1,20 μm	0,10 μm 20 à 250/265 CP7334I 0,20 μm 20 à 250/265 CP7335I CP7345I 0,12 μm 20 à 250/265 CP7791I 0,25 μm 20 à 250/265 0,20 μm 20 à 250/265 0,15 μm 20 à 250/265 CP7703I 0,25 μm 20 à 250/265 CP8513I 0,50 μm 20 à 250/265 1,20 μm 20 à 250/265 0,15 μm 20 à 250/265 0,15 μm 20 à 250/265 0,20 μm 20 à 250/265 0,20 μm 20 à 250/265 0,25 μm 20 à 250/265 0,40 μm 20 à 250/265 CP85	0,10 μm 20 à 250/265 CP7334I CP7345I 0,20 μm 20 à 250/265 CP7335I CP7345I 0,12 μm 20 à 250/265 CP7791I 0,25 μm 20 à 250/265 CP7792I 0,20 μm 20 à 250/265 0,15 μm 20 à 250/265 CP7703I CP7713I 0,25 μm 20 à 250/265 CP8513I 0,50 μm 20 à 250/265 CP8513I 1,20 μm 20 à 250/265 CP7763I 0,15 μm 20 à 250/265 CP7673I 0,15 μm 20 à 250/265 CP7763I 0,20 μm 20 à 250/265 CP7743I 0,25 μm 20 à 250/265 CP7789I 0,50 μm 20 à 250/265	0,10 μm 20 à 250/265 CP7334I 0,20 μm 20 à 250/265 CP7335I CP7345I 0,12 μm 20 à 250/265 CP7791I 0,25 μm 20 à 250/265 CP7775I CP7775I 0,15 μm 20 à 250/265 CP8745I 0,20 μm 20 à 250/265 CP7703I CP7713I 0,25 μm 20 à 250/265 CP8513I CP8713I 0,50 μm 20 à 250/265 CP8513I CP7673I 0,15 μm 20 à 250/265 CP7673I CP8746I 1,20 μm 20 à 250/265 CP7673I CP8757I CP8743I CP8843I CP8843I CP8843I CP8763I	0,10 μm 20 à 250/265 CP7334I	0,10 μm 20 à 250/265 CP7334I

Colonnes DB-FFAP

Polyéthylèneglycol modifié à l'acide nitrotéréphtalique - USP : G35

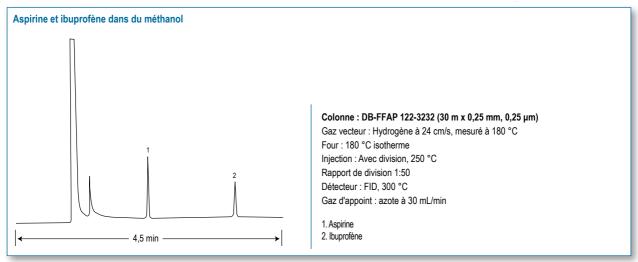
Phases similaires: UptiBond FFAP

DB-FFAP, Stabilwax-DA, OV-351, CP Wax 58CB, SP-1000, 007-FFAP,

Nukol, UB-FFAP, BP-21.

Applications: Acides organiques, alcools, aldéhydes, acrylates, cétones, nitrites.

-HO-	— — — Н Н 	_ ⊔
-10-	—С—С—О- 	
		n


Ø int.	Film	θ limite °C	10 m	15 m	25 m	30 m	50 m	60 m
0,10 mm	0,10 µm	40 à 250	127-3212	127-32H2				
0,25 mm	0,25 µm	40 à 250		122-3212		122-3232		122-3262
	0,50 µm	40 à 250				122-3233		122-3263
0,32 mm	0,25 µm	40 à 250		123-3212		123-3232		123-3262
	0,50 µm	40 à 250			123-3223	123-3233	123-3253	123-3263
	1,00 µm	40 à 250				123-3234		123-3264
0,45 mm	0,85 µm	40 à 250				124-3232		
0,53 mm	0,25 µm	40 à 250				125-3231		
	0,50 µm	40 à 250		125-3217		125-3237		
	1,00 µm	40 à 250	125-32H2	125-3212		125-3232		125-3262
	1,50 µm	40 à 250				125-3233		

Autres configurations disponibles: colonnes sur cage 5", colonnes pour module LTM et colonnes pour Intuvo sur demande.

Colonnes HP-FFAP

Polyéthylèneglycol-TPA - USP: G35

Phases similaires: SDB-FFAP, Stabilwax-DA, OV-351, CP Wax 58CB,

SP-1000, 007-FFAP, Nukol, UB-FFAP, BP-21.

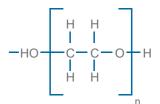
Applications: Acides organiques, alcools, aldéhydes, acrylates, cétones,

Nous déconseillons l'utilisation de l'eau ou du méthanol pour rinçer les colonnes de CPG HP-FFAP.

-40-	— H F I I		
-HO-	— C — C	,-0-	П
	н	1	
			n

Ø int.	Film	θ limite °C	10 m	15 m	25 m	30 m	50 m
0,20 mm	0,33 µm	60 à 240/250			19091F-102		19091F-105
0,25 mm	0,25 µm	60 à 240/250				19091F-433	
0,32 mm	0,25 µm	60 à 240/250				19091F-413	
	0,50 µm	60 à 240/250		19091F-112			19091F-115
0,53 mm	1,00 µm	60 à 240	19095F-121	19095F-120		19095F-123	

CP-Wax 58 FFAP CB

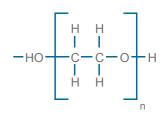

Polyéthylèneglycol-TPA - USP : G25

Phases similaires: SUPELCOWAX 10, SUPEROX II, CB-WAX, Stabilwax,

BP-20, 007-CW, Carbowax, Rtx-WAX, ZB-WAX.

Applications: Acides, phénols, acides gras dérivatisés ou non.

Ø int.	Film	θ limite °C	25 m	50 m
0,20 mm	0,30 µm	20 à 350/275	CP7787	CP7797
0,25 mm	0,20 µm	20 à 350/275	CP7717	CP7727
0,32 mm	0,20 µm	20 à 350/275	CP7747	CP7757
	0,50 µm	20 à 350/275	•••	CP7778
	1,20 µm	20 à 350/275	CP7767	CP7777
0,53 mm	1,00 µm	20 à 350/275	CP7614	CP7624
	2,00 µm	20 à 350/275	CP7654	CP7664


Carbowax 20M et HP-20M

Polyéthylèneglycol, MW 20,000 - USP: G16

Phases similaires: Rt-CW20M F&F.

Applications: Alcools, acides libres, éthers, glycols, solvants.

Les colonnes Carbowax 20M et HP-20M ne sont ni greffées, ni réticulées, nous déconseillons de les rincer avec un solvant. DB-WAX est la colonne greffée recommandée pour remplacer la HP-20M. Phases non gréffées pour méthodes validées

Carbowax 20M					HP-20M				
Ø int.	Film	θ limite °C	30 m	60 m	θ limite °C	10 m	25 m/30 m*	50 m	
0,20 mm	0,10 µm				60 à 220		19091W-102	19091W-105	
0,25 mm	0,25 µm	60 à 220/240	112-2032		60 à 220				
0,32 mm	0,25 µm	60 à 220/240	113-2032	113-2062	60 à 220				
	0,30 µm				60 à 220		19091W-012	19091W-015	
0,53 mm	1,33 µm				60 à 220	19095W-121	19095W-123*		

*30 m

Autres configurations disponibles: colonnes sur cage 5", colonnes pour module LTM et colonnes pour Intuvo sur demande.

Produits Liés

Flacons certifiés Agilent conçus pour une utilisation sans défaillance avec les passeurs automatiques Agilent. Voir chapitre : Flacons & Capsules I Agilent technologies

Colonnes DB haute température : DB-1ht, DB-5ht, DB-17ht

- Tube en silice fondue revêtu d'un polyimide haute température.
- Excellente forme de pic et élution plus rapide des composés à haut point d'ébullition.
- Greffée et réticulée, rinçable aux solvants..

Type de colonne	Ø int.	Film	θ limite °C	5 m	10 m	15 m	30 m	60 m
DB-1ht	0,25 mm	0,10 µm	-60 à 400			122-1111	122-1131	
	0,32 mm	0,10 µm	-60 à 400			123-1111	123-1131	
	0,53 mm	0,17 µm	-60 à 400				125-1131	
DD 514	0,25 mm	0,10 µm	-60 à 400			122-5711	122-5731	
DB-5ht	0,32 mm 0,10 µm -60 à 400	123-5701	123-5711	123-5731				
DB-17ht	0,25 mm	0,15 µm	40 à 340/365	122-1801		122-1811	122-1831	
	0,32 mm	0,15 µm	40 à 340/365			123-1811	123-1831	123-1861

VF-5HT, VF-5HT Ultimétal

Phases similaires: ZB-5ht, Rxi-5ht.

Applications: Composés à points d'ébullition élevés.

Type de colonne	Ø int.	Film	θ limite °C	10 m	15 m	30 m
VF-5ht	0,25 mm	0,10 µm	-60 à 430/450		CP9045	CP9046
	0,32 mm	0,10 µm	-60 à 430/450	CP9044	CP9047	CP9048
VF-5ht Ultimétal	0,25 mm	0,10 µm	-60 à 430/450		CP9090	CP9092
	0,32 mm	0,10 µm	-60 à 430/450		CP9094	CP9096

Analyse GC Colonnes capillaires - Agilent J&W - Pétrole & Pétrochimie

Retour au SOMMAIRE

Agilent Technologies

Colonnes pour les analyses pétrolières et pétrochimiques

Type de colonne	Applications	Ø int.	Film	θ limite °C	10 m	50 m	100 m	150 m
Lowox	Composés oxygénés	0,53 mm	10,00 µm	0 à 350/350	CP8587			
GS-OxyPLOT	Composés oxygénés dans hydrocarbures en C1 à C10	0,53 mm		350	115-4912			
CP-Sil 5CB pour formaldéhyde	Analyse formaldéhyde, eau et méthanol	0,32 mm	8,00 µm	-60 à 300/325		CP7475 (60 m)		
HP-PONA	Séparation m-xylène du p-xylène et le cyclopentane du 2,3-diméthylbutane	0,20 mm	0,50 µm	-60 à 325/350		19091Z-001		
UD 4	•	0,20 mm	0,50 µm	-60 à 325/350		19091Z-205		
HP-1		0,25 mm	0,50 µm	-60 à 325/350			19091Z-530	
		0,21 mm	0,50 µm	250/275		CP7531		
CP-Sil PONA CB	ASTM - méthode DHA	0,25 mm	0,50 µm	250/275			CP7530	
			1,00 µm	250/275				CP7945
CP-Sil PONA	ASTM D5134	0,21 mm	0,50 µm	250/275		CP7531		
DD D 4		0,20 mm	0,50 µm			128-1056		
DB-Petro		0,25 mm	0,50 µm				122-10A6	
HP-1 revêtement alu		0,53 mm	0,09 µm	0 à 350/450	19095S-200 19095S-205 (5 m)			
DB-2887	ASTM D2887	0,53 mm	3,00 µm	-60 à 350	125-2814			
			<u> </u>					

Distillation simulée

Applications	Ø int.	Film	θ limite °C	5 m	10 m	20 m	50 m
Distilation C6 à C110+	0,53 mm	0,10 µm	-60 à 400/430	145-1009			
		0,15 µm	-60 à 400/430	145-1001			
D'action and a 16	0,32 mm	0,10 µm	375/400		CP7521		
Distillitation simulée jusqu'à C100	0,53 mm	0,10 µm	375/400		CP7541		
		0,17 µm	375/400	CP7522			
	0,53 mm	0,06 µm	450/450		CP6540		CP6560
		0,09 µm	450/450	CP7569			
		0,11 µm	450/450			CP7593	
MACHINE A OTHER DOODT		0,17 µm	450/450	CP7532	CP7542		
		0,53 µm	450/450		CP7592		
et D2007 etendue		0,88 µm	450/450	CP7570	CP7512		
		1,20 µm	450/450		CP7562		
		2,65 µm	400/400	CP7571	CP7582		
		5,00 µm	400/400		CP7572		
	Distilation C6 à C110+ Distillitation simulée	Distilation C6 à C110+ 0,53 mm Distillitation simulée jusqu'à C100 0,32 mm / 0,53 mm 0,53 mm 0,53 mm	Distilation C6 à C110+ 0,53 mm 0,10 μm 0,32 mm 0,10 μm 0,53 mm 0,10 μm 0,53 mm 0,10 μm 0,17 μm 0,06 μm 0,99 μm 0,11 μm 0,53 μm 0,53 μm	Distilation C6 à C110+ 0,53 mm 0,10 μm -60 à 400/430 0,15 μm -60 à 400/430 -60 à 400/430 0,32 mm 0,10 μm 375/400 0,53 mm 0,10 μm 375/400 0,17 μm 375/400 0,53 mm 0,06 μm 450/450 0,09 μm 450/450 0,11 μm 450/450 0,17 μm 450/450 0,53 μm 450/450 0,88 μm 450/450 0,88 μm 450/450 1,20 μm 450/450 2,65 μm 400/400	Distilation C6 à C110+ 0,53 mm 0,10 μm -60 à 400/430 145-1001 Distillitation simulée jusqu'à C100 0,32 mm 0,10 μm 375/400 0,53 mm 0,10 μm 375/400 0,17 μm 375/400 CP7522 0,53 mm 0,06 μm 450/450 0,09 μm 450/450 CP7569 0,11 μm 450/450 CP7532 0,17 μm 450/450 CP7532 0,53 μm 450/450 0,88 μm 450/450 CP7570 1,20 μm 450/450 2,65 μm 400/400 CP7571	Distilation C6 à C110+ 0,53 mm 0,10 μm -60 à 400/430 145-1009 Distillitation simulée jusqu'à C100 0,32 mm 0,10 μm 375/400 CP7521 0,53 mm jusqu'à C100 0,53 mm 0,10 μm 375/400 CP7541 0,53 mm jusqu'à C100 0,53 mm 0,06 μm 450/450 CP6540 0,53 mm jusqu'à C100 0,09 μm 450/450 CP6540 0,11 μm 450/450 CP7569 0,11 μm 450/450 CP7532 CP7542 0,53 μm 450/450 CP7532 CP7592 0,88 μm 450/450 CP7570 CP7512 1,20 μm 450/450 CP7562 2,65 μm 400/400 CP7571 CP7582	Distilation C6 à C110+ 0,53 mm 0,10 μm -60 à 400/430 145-1009 0,15 μm -60 à 400/430 145-1001 Distillitation simulée jusqu'à C100 0,32 mm 0,10 μm 375/400 CP7521 0,53 mm 0,10 μm 375/400 CP7541 0,17 μm 375/400 CP7522 0,53 mm 0,06 μm 450/450 CP6540 0,09 μm 450/450 CP7569 CP7593 Méthodes ASTM D2887 et D2887 étendue 0,17 μm 450/450 CP7532 CP7542 0,53 μm 450/450 CP7592 0,88 μm 450/450 CP7570 CP7512 1,20 μm 450/450 CP7562 2,65 μm 400/400 CP7571 CP7582

Type de colonne	Applications	Ø int.	Film	θ limite °C	25 m	50 m
	Hydrocarbures cycliques	0,25 mm	0,25 µm	25 à 200/200	CP7714	
CP-Sil 2 CB		0,32 mm	0,25 µm	25 à 200/200		CP7754
			1,20 µm	25 à 200/200	CP7764	
CP-TECEP	Alcools dans l'essence	0,25 mm	0,40 µm	135/140		CP7525
Select Low Sulfur	Composés soufrés	0,32 mm		185		CP8575 (60 m)
CP-Sil5CB pour composés soufrés	Composés soufrés volatils jusqu'au mercaptan C7	0,32 mm	4,00 µm	-60 à 300/325	CP7529 (30 m)	
Select Al2O3 MAPD	Analyse des hydrocarbures réactifs comme le mélange	0,32 mm		-100 à 200/200	CP7433	CP7431
Select AI2O3 MAPD	méthylacétylène-propadiène (MAPD)	0,53 mm		-100 à 200/200		CP7432

Colonnes pour l'analyse des Biodiesel / Biocarburants

Type de colonne	Ø int.	Film	θ limite °C	10 m	15 m	30 m
ASTM D6584, glycérine libre/totale	0,32 mm	0,10 µm	-60 à 400		123-BD11	
EN14105, glycérine libre/totale	0,32 mm	0,10 µm	-60 à 400	123-BD01		
EN14103, analyse des EMAG (FAME)	0,32 mm	0,25 µm	40 à 260/270			1909BD-113
EN14110, méthanol résiduel	0,32 mm	1,80 µm	20 à 260/280			123-BD34

Colonnes pour l'analyse d'amines

Type de colonne	Applications	Ø int.	Film	θ limite °C	15 m	30 m	60 m
CP-Volamine	Phase stationnaire apolaire. Analyse des amines volatils comme les MMA, DMA et TMA (monométhylamines, diméthylamines et triméthylamines).	0,32 mm		265/300	CP7446	CP7447	CP7448
CP-Sil 8 CB pour amines	Phase (5 % phényl)-diméthylpolysiloxane à désactivation basique. Inertie chimique optimisée pour un grand nombre de composés aminés, stabilité thermique jusqu'à 350 °C, permet d'analyser une gamme étendue d'amines jusqu'à C20, de même que les	0,15 mm	2,00 µm	325/350		CP7599 (25 m)	
		0,25 mm	0,25 µm	325/350		CP7598	
			0,50 µm	325/350		CP7595	
		0,32 mm	1,00 µm	325/350		CP7596	
	alkanolamines.	0,53 mm	1,00 µm	325/350		CP7597	
CP-Wax pour les amines		0,32 mm	1,20 µm	220/220		CP7422 (25 m)	
volatils et les diamines			2,00 µm	220/200		CP7424 (25 m)	
PoraPLOT Amines	Colonnes PLOT uniques, conçues pour obtenir une excellente rétention des amines volatils. Haute efficacité aux températures supérieures	0,32 mm	10,00 µm	-100 à 220		CP7591 (25 m)	
	à l'ambiante. Elimine la nécessité du refroidissement cryogénique.	0,53 mm	20,00 μm	-100 à 220		CP7594 (25 m)	

Autres configurations disponibles: colonnes sur cage 5", colonnes pour module LTM et colonnes pour Intuvo sur demande.

Produits Liés

Pièces détachées pour injecteurs et détecteurs Agilent : Reportez-vous au chapitre Consommables - Pièces détachées GC - Agilent

Colonnes pour l'analyse des Pesticides

Type de colonne	Applications	Ø int.	Film	θ limite °C	25 m	30 m	50 m
DB-CLP 1	Méthodes EPA (États-Unis) : pesticides CLP (Contract Laboratory	0,32 mm	0,25 µm	50 à 340/360		123-8232	
et DB-CLP 2	Program) 504,1, 505, 508,1, 551,552,3, 8081B, 8082A, 8154A	0,32 111111	0,50 µm	50 à 340/360		123-8336	
/F-5 Pesticides	Détermination des pesticides résiduels	0,25 mm	0,25 µm	-60 à 325/350		CP9074	CP9073
VI -0 I esticides	à l'état de traces	0,32 mm	0,25 µm	-60 à 325/350		CP9075	
	A solve a decreaticidas concessible de	0,25 mm	0,25 µm	-20 à 280/300		123-7732	
DB-1701P	Analyse des pesticides organochlorés Remplace la HP-PAS1701	0,32 mm	0,25 µm	-20 à 280/300	123-7722	123-7732	
	Remplace la Fill -1 AOT/01	0,53 mm	1,00 µm	-20 à 260/280		125-7732	
VF-1701 Pesticides	Pesticides résiduels à l'état de traces	0,25 mm	0,25 µm	-20 à 280/300		CP9070	CP9072
	Pesticides residueis à retat de traces	0,32 mm	0,25 µm	-20 à 280/300		CP9071	
CP-Sil 8 CB	Inertie excellente, testée avec du DDT	0,25 mm	0,12 µm	300/325			CP7481
our pesticides	afin de fournir des données fiables	0,53 mm	0,25 µm	300/325			CP7504
CP-Sil 19 CB	Spécifiée pour les analytes EPA et CLP	0,25 mm	0,20 µm	275/300			CP7406
oour pesticides	pour les mises en conformité		0,25 µm	275/300		CP7407	
	Analyse des pesticides chlorés	0,25 mm	0,25 µm	40 à 280/300		122-6832	
DB-608	et des PCB	0,32 mm	0,50 µm	40 à 280/300		123-1730	
JD-000	Méthodes EPA: 608, 508, 8080	0,53 mm	0,50 µm	40 à 260/280		125-6837	
	Remplace la HP-608		0,83 µm	40 à 260/280		125-1730	
IP-PAS5	Analyses des pesticides organochlorés	0,32 mm	0,52 µm	-60 à 325/350	19091S-010		
	Équivalente à una phace	0,53 mm	0,18 µm	-60 à 325/325	CP8131 (10 m)		
Rapid-MS	Équivalente à une phase 5 % phényl-95 % diméthylpolysiloxane		0,25 µm	-60 à 325/325	CP8132 (10 m)		
	5 // prierryi-55 // dirrietriyiporysiloxarie		0,50 µm	-60 à 325/325	CP8133 (10 m)		

Colonnes pour l'analyse des PAH

Type de colonne	Applications	Ø int.	Film	θ limite °C	20 m	30 m	60 m
Select PAH	Séparation complète des HAP de l'EPA en moins de 7 minutes et des HAP de l'UE en moins de 30 minutes, y compris	0,15 mm	0,10 µm	40 à 325/350	CP7461		
	le chrysène, le triphénylène et les benzofluoranthènes (b, j et k),	0,25 mm	0,15 µm	40 à 325/350		CP7462	
DB-EUPAH	Analyse des HAP de la réglementation de l'UE. Excellente résolution pour les isomères difficiles à séparer, comme les benzo(b,j,k)-fluroranthènes.	0,18 mm	0,14 µm	40 à 320/340	121-9627		
		0,25 mm	0,25 µm	40 à 320/340		122-96932	122-96L2
CP-Sil PAH CB UltiMétal	16 HAP selon la méthode EPA 610	0,25 mm	0,12 µm	400/425		CP7440 (25 m)	

Autres configurations disponibles : colonnes sur cage 5", colonnes pour module LTM et colonnes pour Intuvo sur demande.

Colonnes pour l'analyse des Semi Volatils

Type de colonne	Applications	Ø int.	Film	θ limite °C	20 m	30 m	60 m
DB-UI 8270D	Méthode 8270D de l'EPA (États-Unis)	0,18 mm	0,36 µm	-60 à 325/350	121-9723		
pour les composés semi-	et l'analyse par CPG/SM d'autres	0,25 mm	0,25 µm	-60 à 325/350		122-9732	
volatils	semi-volatils réglementés		0,50 µm	-60 à 325/350		122-9736	
CP-sil 8 CB pour PCB	Analyse des PCB selon la méthode DIN 51527	0,25 mm	0,25 µm	-60 à 325/350			CP7482 (50 m)
		0,18 mm	0,18 µm	-60 à 325/350	121-5621		
	Équivalent proche d'une (5 %-phényl)-méthylpolysiloxane Traitée spécialement pour obtenir une		0,36 µm	-60 à 325/350	121-5622		
		0,25 mm	0,25 µm	-60 à 325/350		122-5631	122-5661
DB-5,625			0,50 µm	-60 à 325/350		122-5632	
	excellente inertie pour les méthodes		1,00 µm	-60 à 325/350		122-5633	
	"semi-volatils" EPA, 625, 1625, 8270	0,32 mm	0,25 µm	-60 à 325/350		123-5631	
			0,50 µm	-60 à 325/350		123-5632	
HP-5ms Semi volatils	5 %-phénylméthylpolysiloxane, sélectivité identique à la HP-5 phase G27 de l'USP	0,25 mm	0,50 µm	-60 à 325/350		190915-139	

Colonnes pour l'analyse des Dioxines et PCB

Type de colonne	Applications	Ø int.	Film	θ limite °C	60 m	100 m
CP-Sil 5/C18 CB pour PCB	Analyse à haute résolution des PCB. Longueur de colonne optimisée pour les paires d'isomères difficiles à séparer : 28/31, 56/60, 149/118, 105/153/132 et 170/190	0,25 mm	0,10 µm	275/300	CP7477 (50 m)	CP7476
DB-Dioxin	Étudiée spécialement pour l'analyse des	0,32 mm	0,15 µm	40 à 250/270	123-2461	
	dibenzodioxines polychlorées (PCDD) et des dibenzofuranes polychlorés (PCDF)		0,25 µm	40 à 250/270	123-2462	
OD Cil an	Phase stationnaire fortement polaire ayant une sélectivité spécifique pour les analyses de dioxines	0,25 mm	0,10 µm	50 à 250/270	CP7498	
CP-Sil 88 pour dioxines	et de dibenzofuranes. La précolonne intégrée élimine les fuites et augmente la durée de vie de la colonne.		0,20 µm	50 à 225/240	CP75885 (50 m)	

Produits Liés

Utilisez la gamme complète Ultra-Inert Agilent avec la colonne, les liners, les ferrules et les planchers de division pour un circuit "ultra inert" de l'échantillon lors de l'analyse.

Voir chapitre: Consommables - Accessoires GC - Inserts d'injection

Produits Liés

Vous analysez un faible volume d'échantillon : utilisez des inserts ou flacons micro-volumes. Voir chapitre : Flacons & Capsules

Colonnes pour l'analyse des volatils

Colonnes DB-624 UI > Voir gamme Ultra Inert (début chapitre)

Colonnes DB-624

6 % cyanopropylphényl méthylpolysiloxane - USP : G43

Phases similaires: AT-624, Rxi-624 Sil MS, Rtx-624, PE-624, 007-624,

007-502, ZB-624.

Applications: Polluants volatils, solvants résiduels, méthodes EPA: 501.3, 502.2, 503.1, 524.2, 601, 602, 8010, 8015, 8020, 8240, 8260 et USP 467.

• L'analyse des polluants volatils prioritaires et des solvants résiduels.

Ø int.	Film	θ limite °C	15 m	20 m	30 m	60 m	75 m
0,18 mm	1,00 µm	-20 à 280		121-1324			
0,20 mm	1,12 µm	-20 à 260		128-1324 (25 m)			
0,25 mm	1,40 µm	-20 à 260			122-1334	122-1364	
0,32 mm	1,80 µm	-20 à 260			123-1334	123-1364	
0,45 mm	2,55 µm	-20 à 260			124-1334		124-1374
0,53 mm	3,00 µm	-20 à 260	125-1314		125-1334	125-1364	125-1374

Colonnes CP-Select 624 CB

6 % cyanopropylphényl méthylpolysiloxane - USP: G43

Phases similaires: AT-624, Rtx-624, PE-624, 007-624, 007-502, ZB-624. Applications: Volatils, méthodes 524.2, 624, 8015, solvants résiduels.

Ø int.	Film	θ limite °C	25 m	30 m	60 m	75 m	105 m
0,15 mm	0,84 µm	265/280	CP7411	•••			
0,25 mm	1,40 µm	265/280		CP7412	CP7413		
0,32 mm	1,80 µm	265/280		CP7414	CP7415		
0,53 mm	3,00 µm	265/280		CP7416		CP7417	CP7418

Autres configurations disponibles: colonnes sur cage 5", colonnes pour module LTM et colonnes pour Intuvo sur demande.

Colonnes DB-VRX

Phases similaires: VOCOL, NON-PAKD, Rtx-Volatiles, PE-Volatils, 007-624, Rtx-VRX,

Rtx-VGC.

Applications: Volatils, méthodes EPA: 502.2, 524.2, BTEX.

Sélectivité exceptionnelle étudiée pour la séparation optimale des composés volatils: méthodes EPA 502,2, 524,2 et 8260.

Ø int.	Film	θ limite °C	20 m	30 m	40 m	60 m	75 m
0,18 mm	1,00 µm	-10 à 260	121-1524		121-1544		
0,25 mm	1,40 µm	-10 à 260		122-1534		122-1564	
0,32 mm	1,80 µm	-10 à 260		123-1534		123-1564	
0,45 mm	2,55 µm	-10 à 260		124-1534			124-1574

Colonnes HP-VOC

Phases similaires: Rtx-502.2, DB-502.2, Rtx-Volatils, Supelco VOCOL.

Applications: Composés organiques volatils, méthodes EPA 502.2, 524.2, 601, 602, 8024, 8260.

• Faible polarité - légèrement plus polaire que la DB-VRX.

Ø int.	Film	θ limite °C	30 m	60 m	90 m	105 m
0,20 mm	1,10 µm	-60 à 280/290	19091R-303	19091R-306		
0,32 mm	1,80 µm	-60 à 280/290		19091R-316	19091R-319	•••
0,53 mm	3,00 µm	-60 à 280/290			19095R-429	19095R-420

Colonnes DB-502.2

Phases similaires: Rtx-502.2, VOCOL, HP-VOC.

Applications: Composés organiques volatils (méthode 502.2).

Ø int.	Film	θ limite °C	60 m	105 m
0,32 mm	1,80 µm	0 à 260/280	123-1464	
0,53 mm	3,00 µm	0 à 260/280		125-14A4

Colonnes DB-MTBE

Applications: séparation MTBE du méthyl-2 pentane et du méthyl-3 pentane (Conçue pour une injection avec échantillonnage d'espace de tête dynamique sans cryofocalisation.)

Ø int.	Film	θ limite °C	30 m
0.45 mm	2.55 um	35 à 260/280	124-0034

Colonnes CP-select CB pour le MTBE

- Conçue pour l'analyse du MTBE (méthyl-tert-butyléther) dans les essences de reformage.
- Sélectivité spécifique pour le MTBE.

Ø int.	Film	θ limite °C	50 m
0,25 mm	0,25 µm	200/200	CP7528

Colonnes DB-TPH

Phases similaires: PE-TPH.

Applications: Hydrocarbures totaux en pétrochimie.

- Conçue spécialement pour l'analyse des hydrocarbures totaux (TPH), les analyses de sol et les essais d'étanchéité des réservoirs de carburant souterrains (LUFT),
- Trois analyses en une seule injection composés organiques dans le gaz, composés organiques dans le gazole et huile pour moteur.

Ø int.	Film	θ limite °C	30 m
0,32 mm	0,25 µm	-10 à 320	123-1632

Colonnes Select Mineral oil

Phases similaires : Rtx-Mineral Oil.

Applications : Huiles minérales.

- Phase greffée stabilisée apolaire conçue pour l'analyse rapide des huiles minérales.
- Sélectivité optimisée pour l'analyse fiable du contenu total en hydrocarbures (TPH) selon les méthodes DIN H53 N-ISO 9377-2.
- Analyse des hydrocarbures en C4 à C40 en moins de dix minutes.

Type de colonne	Ø int.	Film	θ limite °C	15 m
Select Mineral oil	0,32 mm	0,10 µm	-60 à 390/400	CP7491

Analyse GC

Colonnes capillaires - Agilent J&W - Agroalimentaire & Parfumerie

Agilent Technologies

Colonnes pour l'analyse dans l'agroalimentaire et la parfumerie

Sélection de colonne par type d'acide gras

Type d'acide gras	CP-FFAP CB	DB-FATWAX UI	DB-23	CP-Sil 88 pour les FAME/HP-88	Select FAME	CP-TAP CB pour les triglycérides
Acides gras libres à chaîne courte (C2-C6)	•	•				•
Acides gras libres à chaîne moyenne (C6-C16)	•	•				
Acides gras libres à chaîne longue (C16-C24)	•					
FAME oméga-3 et oméga-6		•	•	•	•	
FAME par degré de saturation		•				
Groupes d'isomères cis et trans de FAME			•	•	•	
Isomères géométriques et de position des FAME				•	•	
Cholestérol et triglycérides						•

Plus lente Sélection de colonne par type d'aliment

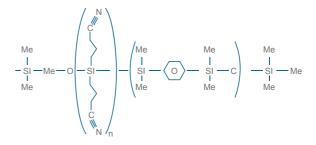
Plus rapide

Type d'aliment	CP-FFAP CB	DB-FATWAX UI	DB-23	CP-Sil 88 pour les FAME/HP-88	Select FAME	CP-TAP CB pour les triglycérides
Produits laitiers (p. ex. lait, beurre, fromage)	•	•	•	•	•	•
Huile de poisson		•	•	•	•	•
Matières grasses d'origine animale		•	•	•	•	•
Oméga-3 et -6		•	•	•	•	
Huiles végétales (colza, soja, olive, palme, maïs)				•	•	•
Huiles raffinées (hydrogénées) -				•	•	
p. ex. : aliments frits, pâtisseries						
Margarines et graisses solides						•

Colonnes DB-FATWAXUI

Colonnes de type PEG Ultra Inerte spécifiques aux applications pour les FAME (Ester Methyliques d'Acides Gras), les FAEE (Esters Ethyliques d'Acides Gras) et les acides gras.

Se reporter à la page D.20.



Colonnes HP-88

(88 % cyanopropyl)aryl-polysiloxane

Phases similaires: SP-2560, SP-2340, SP-2330, BPX-70, BPX-9088.

- Conçue pour la séparation des isomères cis/trans des esters méthyliques d'acides gras (FAMES), meilleure séparation qu'avec la DB-23
- Comme les colonnes HP-88 ne sont ni greffées ni réticulées, nous déconseillons de les rincer avec un solvant.

Ø int.	Film	θ limite °C	30 m	60 m	100 m
0,25 mm	0,20 µm	0 à 250/260	112-8837	112-8867	112-88A7

Colonnes CP-Sil 88

Cyanopropyl polysiloxane - USP: G5, G8

Phases similaires: SP-2560, SP-2340, SP-2330, BPX-70, BPX-90.

Applications: FAME, dioxines.

- Haute sélectivité des isomères de position et des isomères de forme pour une utilisation facile.
- Phase cyanopropyle hautement substituée, polarité la plus élevée, non greffée et non stabilisée par voie chimique.

Ø int.	Film	θ limite °C	25 m	50 m
0,25 mm	0,20 µm	50 à 225/240	CP6172	CP6174
0,32 mm	0,20 µm	50 à 225/240	CP6173	CP6175

Colonnes Select FAME

Phases similaires: SP-2560, SP-2340, SP-2330, BPX-70, BPX-90.

Applications: FAME.

- Optimisée pour les séparations cis/trans d'EMAG (FAME), en particulier les isomères C18.
- Forme de pic excellente et très bonne séparation des isomères d'EMAG (FAME), surtout si l'un des composés est présent en concentration plus élevée.
- Greffée et réticulée.
- Haute efficacité et grande capacité de chargement.
- Des colonnes atteignant 200 m sont disponibles pour l'analyse détaillée du groupe des isomères C18:1.

Ø int.	Film	θ limite °C	50 m	100 m	200 m	
0.25 mm		275/290	CP7419	CP7420	CP7421	

Colonnes CP-Sil 88 pour les EMAG (FAME)

- Optimisée pour la séparation des isomères cis-trans d'EMAG (FAME).
- Cette phase stationnaire très polaire améliore l'efficacité et augmente la productivité
- Utilisée pour les EMAG (FAME) de C6 à C26

Ø int.	Film	θ limite °C	50 m	60 m	100 m	
0,25 mm	0,20 µm	275/290	CP7488	CP7447	CP7489	

Colonnes CP-Wax 57 CB

Polyéthylène Glycol

Phases similaires: SUPELCOWAX 10, SUPEROX II, CB-WAX, Stabilwax,

BP-20, 007-CW, Carbowax, Rtx-WAX, ZB-WAX.

Applications: Alcools, hydrocarbures aromatiques, esters, FAME, arômes et parfums, acides gras libres, glycols, cétones, acides organiques, solvants.

- Colonne wax (carbocire) greffage unique à polarité élevée.
- Une solution industrielle éprouvée pour les analyses d'alcools du secteur brassicole, des vins et spiritueux.
- Une inertie chimique excellente pour une forme optimale de pic pour les alcools et les glycols.

Ø int.	Film	θ limite °C	25 m	30 m	50 m	60 m
0,15 mm	0,12 µm	20 à 200/225		CP97721		
0,25 mm	0,20 µm	20 à 200/225	CP97713		CP97723	
	0,40 µm	20 à 200/225				CP8120
0,32 mm	0,20 µm	20 à 200/225	CP97743		CP97753	
	1,20 µm	20 à 200/225	CP97763		CP97773	
0,53 mm	2,00 µm	20 à 200/225	CP97658			

Colonnes CP-Carbowax 400 pour les volatils dans l'alcool

- Conçue pour l'analyse des composés volatils dans les boissons alcoolisées.
- Haute résolution et haute efficacité avec les alcools amyliques permettant un contrôle de qualité plus précis même à basse température.

Ø int.	Film	θ limite °C	50 m
0,32 mm	0,20 µm	60/80	CP7527

Colonnes CP-Wax 57 CB pour les glycols, diols et alcools

 Phase wax (carbocire) spécifique à polarité élevée, phase greffée et réticulée pour une robustesse et une durée de vie accrues de la colonne.

Ø int.	Film	θ limite °C	25 m
0,25 mm	0,20 µm	200/200	CP7615
0,53 mm	0,50 µm	225/250	CP7617

Colonnes pour l'analyse des sciences de la vie

Colonnes DB-BAC UI

Grande inertie : Résolution et séparation à la ligne de base optimisées pour les pics critiques de l'analyse d'alcool dans le sang 8260. Excellente forme de pic et une intégration précise des composés faiblement concentrés. Se reporter à la page D.20.

Colonnes DB-ALC1 et DB-ALC2

- Analyse fiable de l'alcool dans le sang : paire de colonnes optmisées pour l'analyse et la confirmation de l'alcoolémie sanguine selon la norme américaine.
- Résolution améliorée des pics importants de l'éthanol et de l'acétone.

Type de colonne	Ø int	Film	θ limite °C	30 m
DB-ALC1	0,32 mm	1,80 µm	20 à 260/280	123-9134
DB-ALC1	0,53 mm	3,00 µm	20 à 260/280	125-9134
DB-ALC2	0,32 mm	1,20 µm	20 à 260/280	123-9234
DD-ALG2	0,53 mm	2,00 µm	20 à 260/280	125-9234

Colonnes capillaires - Agilent J&W - Sciences de la vie

Analyse de l'alcool dans le sang

- Excellente colonne de confirmation avec DB-ALC2 pour les méthodes utilisant le t-butanol comme étalon interne.
- Phases similaires : aucune.

Ø int.	Film	θ limite °C	7,5 m
0,32 mm	2,00 µm	-60 à 270/290	19091S-510

Colonnes DB-select 624 ui pour méthode 467

- Conçue pour optimiser l'analyse des solvants résiduels dans les produits pharmaceutiques selon la méthode <467> de la Pharmacopée américaine.
- Inertie ultime et faible ressuage.
- Séparation des paires critiques selon la Pharmacopée américaine, sépare également le benzène et le 1,2-dichloroéthane.
- Sélectivité identique à la célèbre colonne VF-624 ms, transfert sans besoin de modifier la méthode.
- La procédure de test des caractéristiques d'inertie ultime "Ultra Inert" garantit des performances de premier plan d'une colonne à l'autre.

Ø int.	Film	θ limite °C	30 m	60 m
0,25 mm	1,40 µm	40 à 260/260	122-0334UI	122-0364UI
0,32 mm	1,80 µm	40 à 260/260	123-0334UI	123-0364UI
0,53 mm	1,80 µm	40 à 260/260	125-0334UI	

Analyse rapide des solvants résiduels

Phases similaires: PE-624, 007-624, 007-502, ZB-624.

- Correspond à la phase G43 de l'USP.
- Le film plus mince réduit le temps d'analyse d'un facteur de 2,5 et améliore jusqu'à 2 fois les limites de détection, par comparaison avec les colonnes standards employées pour l'analyse des solvants résiduels.
- Greffée et réticulée.

Ø int.	Film	θ limite °C	30 m
0,53 mm	1,00 µm	-20 à 260	19095V-420

Autres configurations disponibles: colonnes sur cage 5", colonnes pour module LTM et colonnes pour Intuvo sur demande.

Les colonnes PLOT sont idéales pour la séparation des composés gazeux à température ambiante. Agilent Technologies propose une gamme complète de colonnes PLOT pour l'analyse des gaz difficilement liquéfiables, des isomères d'hydrocarbures de faible poids moléculaire, des composés polaires volatils et des composés réactifs, tels que les gaz soufrés, les amines et les hydrures. Nos colonnes PLOT sont disponibles avec des d.i. de 0,25 à 0,53 mm, ce qui facilite le choix en fonction des détecteurs et des systèmes. Pour les systèmes de CPG/SM, nous proposons plusieurs colonnes de petit diamètre avec des phases stationnaires greffées et immobilisées, ce qui supprime tout risque de contamination du détecteur par les particules.

Colonnes PoraBOND Q et PoraBOND U

 ${\bf Phases\ similaires: Rt\text{-}Q\ BOND,\ Rt\text{-}QPLOT,\ SupelQ\ PLOT\ /\ Rt\text{-}U\text{-}BOND.}$

Applications: Hydrocarbures et de solvants volatils.

- Colonne PLOT greffée donnant des analyses d'hydrocarbures et de solvants volatils plus fiables, la technique de greffage permet de réduire considérablement la perte de particules et la nécessité de les piéger.
- Conçue pour une haute stabilité et résistance aux injections d'eau répétées.

Type de colonne	Ø int.	Film	θ limite °C	10 m	25 m	50 m
	0,25 mm	3,00 µm	-100 à 300/320	CP7347	CP7348 ou CP7348PT *	
PoraBOND Q	0,32 mm	5,00 µm	-100 à 300/320	CP7350	CP7351 ou CP7351PT*	CP7352 ou CP7352PT*
	0,53 mm	10,00 µm	-100 à 300/320	CP7353 ou CP7353PT*	CP7354 ou CP7354PT*	CP7355
PoraBOND U	0,32 mm	7,00 µm	-100 à 300/300		CP7381	

^{*}PT pour "Particles Trap" : un piège à particules de 2,5 m est intégré à chaque extrémité, ce qui permet l'utilisation de ces colonnes en MS.

Colonnes PoraPLOT Q & PoraPLOT Q-HT

Phases similaires: Rt-Q BOND, Rt-QPLOT, SupelQ PLOT. Applications: Composés volatils polaires et apolaires.

- Conseillée pour les systèmes de commutation de colonne pour l'analyse de nombreux composés volatils polaires et apolaires.
- La rétention des composés cible n'est pas influencée par l'eau contenue dans l'échantillon, car le pic de l'eau est fin et par conséquent quantifiable.
- La stabilité à long terme fournit des temps de rétention répétables.

Type de colonne	Ø int.	Film	θ limite °C	10 m	25 m	50 m
	0,25 mm	8,00 µm	-100 à 250/250	CP7548	CP7549	
PoraBOND Q	0,32 mm	10,00 µm	-100 à 250/250	CP7550 ou CP7550PT*	CP7551 ou CP7551PT*	CP7552
	0,53 mm	20,00 µm	-100 à 250/250	CP7553	CP7554 ou CP7554PT*	CP7555
PoraPLOT Q Ultimétal	0,53 mm	20,00 µm	-100 à 250/250	CP6953	CP6954	
PoraPLOT Q-HT	0,32 mm	10,00 µm	-100 à 290/290	CP7556	CP7557	
POTAPLOT Q-HT	0,53 mm	20,00 µm	-100 à 290/290	CP7558	CP7559	

^{*}PT pour "Particles Trap" : un piège à particules de 2,5 m est intégré à chaque extrémité, ce qui permet l'utilisation de ces colonnes en MS.

Colonnes HP-PLOT Q + GS-Q

Phases similaires: Rt-QPLOT, SupelQ PLOT.

Applications: C1 à C3 et les alcanes jusqu'en C12, CO2, le méthane, l'air/CO, les composés oxygénés, les composés soufrés et les solvants.

Colonne au polystyrène-divinylbenzène greffé

- Polarité intermédiaire entre Porapak-Q et Porapak-N, peut remplacer les colonnes remplies
- Excellente colonne pour les isomères de C1 à C3 et les alcanes jusqu'en C12, CO₂, le méthane, l'air/CO, les composés oxygénés, les composés soufrés et les solvants ainsi que la séparation de l'éthane, l'éthylène (éthène) et l'acétylène (éthyne).
- Résolution améliorée et temps de cycle réduit par rapport aux colonnes remplies conventionnelles.
- Temps de conditionnement minimal : 1 heure.

Type de colonne	Ø int.	Film θ limite °	10 m	25 m	25 m	50 m
HP-PLOT Q	0,32 mm 2	20,00 µm -60 à 270/2	90	19091P-QO3 19091P-QO3PT*		19091P-QO4 19091P-QO4PT*
	0,53 mm 4	40,00 μm -60 à 270/2	90	19095P-QO3 19095P-QO3PT*		19095P-QO4 19095P-QO4PT*
GS-Q	0,32 mm	-60 à 250				113-3432
	0,53 mm	-60 à 250	115-34H2	115-3412	115-3422	115-3432

^{*}PT pour "Particles Trap" : un piège à particules de 2,5 m est intégré à chaque extrémité, ce qui permet l'utilisation de ces colonnes en MS.

Colonnes PoraPLOT U

Phases similaires: Rt-U-BOND.

Applications: Composés halogénés, hydrocarbures C1-C6, cétones, solvants.

- La plus polaire des colonnes PLOT à polymère poreux, Elle est idéale pour les composés halogénés, les hydrocarbures C1-C6 les cétones et les solvants.
- Forme de pic excellente pour les composés volatils polaires et apolaires.
- L'eau n'a pas d'effet sur les temps de rétention et son pic est fin et quantifiable.
- Très bonne répétabilité des temps de rétention.

Ø int.	Film	θ limite °C	10 m	25 m
0,25 mm	8,00 µm	-100 à 190/190		CP7579
0,32 mm	10,00 µm	-100 à 190/190	CP7580	CP7581
0,53 mm	20,00 μm	-100 à 190/190	CP7583	CP7584 CP7584PT*

^{*}PT pour "Particles Trap" : un piège à particules de 2,5 m est intégré à chaque extrémité, ce qui permet l'utilisation de ces colonnes en MS.

Colonnes PoraPLOT S

Phases similaires: Rt-S-BOND, MXT-SBOND. Applications: Hydrocarbures, cétones.

- Polymère divinylbenzène/vinylpyridine pour les hydrocarbures et cétones.
- Idéale pour l'analyse des composés volatils de polarité moyenne dont les hydrocarbures et les cétones.
- Limite de température plus élevée que la PoraPLOT U.

Ø int. Film	θ limite °C	25 m
0.53 mm 20.00 um	-100 à 250/250	CP7574

Colonnes HP-PLOT U

Phases similaires: RTU PLOT.

Applications: Hydrocarbures C1 à C7, C0, méthane, l'air/C0, eau, composés oxygénés, amines, solvants, alcools, cétones, aldéhydes.

- Phase divinylbenzène/éthylèneglycol diméthacrylate greffée.
- Plus polaire que la HP-PLOT Q.
- Excellente colonne pour les hydrocarbures C1 à C7, le CO₂, le méthane, l'air/CO, l'eau, les composés oxygénés, les amines, les solvants, les alcools, les cétones et les aldéhydes.
- Résolution améliorée et temps de cycle réduit par rapport aux colonnes remplies conventionnelles.

Ø int.	Film	θ limite °C	15 m	30 m
0,32 mm	10,00 µm	-60 à 190		19091P-UO4
0,53 mm	20,00 μm	-60 à 190	19095P-UO3	19095P-UO4 19095P-UO4PT*

^{*}PT pour "Particles Trap" : un piège à particules de 2,5 m est intégré à chaque extrémité, ce qui permet l'utilisation de ces colonnes en MS.

Colonnes HP-PLOT Al, O, KCI et GS-Alumine KCI

Phases similaires: Rt-Alumina PLOT, Alumina PLOT, Al₂O₃/KCl, AB-PLOT Al₂O₃ KCl, AT-Alumina.

Applications: Hydrocarbures légers - C1 à C8 des isomères d'hydrocarbures.

- La phase Alumine la moins "polaire". Oxyde d'aluminium désactivé par KCI.
- Une colonne standard pour l'analyse des hydrocarbures légers C1 à C8 des isomères d'hydrocarbures, une rétention faible des oléfines par rapport à une paraffine comparable.
- Excellente pour la quantification des diènes, particulièrement le propadiène et le butadiène des flux de l'éthylène et du propylène.
- Phase recommandée pour de nombreuses méthodes ASTM.

Type de colonne	Ø int.	Film	θ limite °C	30 m	50 m
HP PLOT AL2O3/KCI	0,25 mm	5,00 µm	-60 à 200	19091P-K33	
	0,32 mm 8	8,00 µm	-60 à 200		19091P-K15 19091P-K15PT*
	0,53 mm 1	15,00 µm	-60 à 200	19095P-K23 19095P-K23PT*	19095P-K25 19095P-K25*
GS-Alumine KCI	0,53 mm		-60 0 200	115-3332	115-3352

^{*}PT pour "Particles Trap" : un piège à particules de 2,5 m est intégré à chaque extrémité, ce qui permet l'utilisation de ces colonnes en MS.

Colonnes CP-Al₂O₃/KCl et CP-Al₂O₃/Na₂SO₄

Phases similaires: Al_2O_3/KCl , Al_2O_3/Na_2SO_4 , Rt-Alumina PLOT, Alumina PLOT, AB-PLOT Al_2O_3 KCl, AT-Alumina et Al_2O_3/KCl , Rt-Alumina PLOT, Alumina PLOT, Alumina PLOT, RT-Alumina BOND/KCl, Alumina chloride PLOT, AB-PLOT Al_2O_3 KCl.

Applications: Hydrocarbures en C1-C5 et éthylène, acétylène.

- Les colonnes PLOT oxyde d'aluminium offrent une haute sélectivité pour la séparation de traces (ppm) d'hydrocarbures en C1-C5 dans les flux de procédés,
- Refroidissement au-dessous de la température ambiante non nécessaire,
- Le choix de deux sélectivités couvre une vaste gamme d'applications.

Remarque: la désactivation par KCl produit une surface Al₂O₃ relativement apolaire, tandis que la désactivation par Na₂SO₄ produit une surface polaire.

Des composés insaturés comme l'éthylène et l'acétylène (éthyne) sont retenus plus longtemps.

Type de colonne	Ø int.	Film	θ limite °C	10 m	25 m	50 m
	0,25 mm	4,00 µm	-100 à 200/200		CP7576	CP7577
PLOT AL ₂ O ₃ /KCL	0,32 mm	5,00 µm	-100 à 200/200	CP7511	CP7519	CP7515 ou CP7515PT*
	0,53 mm	10,00 µm	-100 0 200/200		CP7517 ou CP7517PT*	CP7518 ou CP7518PT*
PLOT AL ₂ O ₃ /KCL Ultimétal	0,53 mm	10,00 µm	-100 à 200/200			CP6918
	0,25 mm	4,00 µm	-100 à 200/200		CP7586	CP7587
PLOT AL ₂ O3/NA ₂ SO ₄	0,32 mm	5,00 µm	-100 à 200/200			CP7565 ou CP7565PT*
	0,53 mm	10,00 µm	-100 à 200/200		CP7567	CP7568ou CP7568PT*
PLOT AL ₂ O ₃ /NA ₂ SO ₄ Ultimétal	0,53 mm	10,00 µm	-100 à 200/200			CP6968

^{*}PT pour "Particles Trap" : un piège à particules de 2,5 m est intégré à chaque extrémité, ce qui permet l'utilisation de ces colonnes en MS.

Colonnes HP-PLOT Al₂O₃SO₄

Phases similaires : Al_2O_3/Na_2SO_4 , Rt-Alumina PLOT, Alumina PLOT, Rt-Alumina BOND/ Na_2SO_4 , MXTAluminaBOND/ Na_2SO_4 , Alumina sulfate PLOT. AT-Alumina.

- Polarité intermédiaire des phases alumine. Oxyde d'aluminium désactivé par sulfate de sodium.
- Une colonne standard pour l'analyse des hydrocarbures légers C1 à C8 des isomères d'hydrocarbures.
- La meilleure solution pour séparer l'acétylène du butane et le propylène de l'isobutane.

Ø int.	Film	θ limite °C	25 m	30 m	50 m
0,25 mm	5,00 µm	-60 à 200		19091P-S33	
0,32 mm	8,00 µm	-60 à 200	19091P-S12PT		19091P-S15 19091P-S15PT*
0,53 mm	15,00 µm	-60 à 200		19095P-S23 19095P-S23PT*	19095P-S25 19095P-S25PT*

^{*}PT pour "Particles Trap" : un piège à particules de 2,5 m est intégré à chaque extrémité, ce qui permet l'utilisation de ces colonnes en MS.

Colonnes GS-Alumina et HP-PLOT Al203M

Phases similaires: Al_2O_3/KCl , Al_2O_3/Na_2SO_4 , Rt-Alumina PLOT, Alumina PLOT, AB-PLOT Al_2O_3 KCl, AT-Alumina. Applications: Hydrocarbures C1 à C8.

- Phase alumine la plus "polaire".
- Excellente colonne à usage général pour l'analyse des hydrocarbures légers isomères d'hydrocarbures C1 à C8, des hydrocarbures saturés et insaturés C1 à C4, du cyclopropane et du propylène.
- Plus rapide, plus efficace et plus sensible que les colonnes remplies équivalentes,
- Colonne de remplacement préférée pour la phase alumine désactivée par sulfate de sodium en raison de sa régénération rapide.

Type de colonne	Ø int. Film	θ limite °C	30 m	50 m
GS-ALUMINA	0,53 mm	-60 à 200	115-3532 ou 115-3532PT*	115-3552 ou 115-3552PT*
HP-PLOT AI2O3M	0,32 mm 8,00 μr	n -60 à 200	19091P-M15	
HP-PLUT AIZUSINI	0,53 mm 15,00 μ	m -60 à 200	19095P-M23	19095P-M25

^{*}PT pour "Particles Trap" : un piège à particules de 2,5 m est intégré à chaque extrémité, ce qui permet l'utilisation de ces colonnes en MS

Colonnes CP-silicaPLOT

Phases similaires : GS-GasPro. Applications : CO₂, gaz soufrés.

- Élution du CO, et des gaz soufrés à quelques ppm de concentration.
- Idéal pour une vaste gamme d'applications comme l'analyse du COS dans l'éthylène, des fréons, des hydrocarbures, du propylène et des composés soufrés, cyclopropane dans propylène.
- Sélectivité élevée des isomères de C1-C4 en présence d'eau.
- La présence d'eau dans l'échantillon n'a aucune influence néfaste, ni sur la rétention, ni sur la forme des pics.

Ø int.	θ limite °C	15 m	30 m	60 m
0,25 mm	-80 à 225/225		CP8564	
0,32 mm	-80 à 225/225	CP8566	CP8567	CP8568
0,53 mm	-80 à 225/225	CP8569	CP8570	CP8571

Colonnes HP-PLOT Molesieve

Phases similaires: Rt-Msieve 5A, MXT-Msieve 5A.

Applications: O2, N2, CO et CH4.

- Une colonne PLOT pour l'analyse des gaz permanents (O₂, N₂, CO et CH₄ sont séparés en moins de 5 min).
- Tamis moléculaire 5 Å résistant, réduisant au minimum le bruit de fond et l'endommagement des vannes multivoies.
- Choisissez un film épais pour la séparation de Ar/O₂ sans refroidissement cryogénique.
- Sélectionnez des colonnes HP-PLOT Molesieve à film mince pour les applications de surveillance de l'air.
- Remplace la colonne GS-Molesieve.

Ø int.	Film	θ limite °C	15 m	30 m
0,32 mm	12,00 µm	-60 à 300		19091P-MS4
	25,00 µm	-60 à 300	19091P-MS7	19091P-MS8
0,53 mm	25,00 µm	-60 à 300	19095P-MS5	19095P-MS6
	50,00 µm	-60 à 300	19095P-MS9	19095P-MS0

Colonnes CP-Molesieve 5A

Phases similaires: Rt-Msieve 5A, MXT-Msieve 5A, Mol Sieve 5A PLOT. Applications: Argon, oxygène.

- Séparation de l'argon et de l'oxygène à température ambiante : réduction des coûts.
- Haute efficacité pour plus de productivité.
- Des pics symétriques pour des résultats exacts.

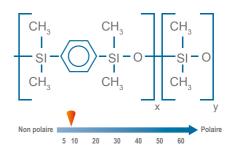
Ø int.	Film	θ limite °C	10 m	15 m	25 m	30 m	50 m
0,25 mm	30,00 µm	-200 à 350/350			CP7533		
0,32 mm	10,00 µm	-200 à 350/350				CP7534 ou CP7534PT*	
	30,00 µm	-200 à 350/350	CP7535		CP7536 ou CP7536PT*		CP7540
0,53 mm	15,00 µm	-200 à 350/350		CP7543		CP7544	
	50,00 µm	-200 à 350/350	CP7537		CP7538		CP7539 ou CP7539PT*
0,53 mm Ultimétal	50,00 µm	-200 à 350/350	CP6937		CP6938 ou CP7538PT*		

^{*}PT pour "Particles Trap" : un piège à particules de 2,5 m est intégré à chaque extrémité, ce qui permet l'utilisation de ces colonnes en MS.

Produits Liés

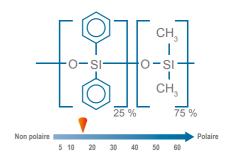
Retrouvez notre offre de sacs de prélèvement pour échantillons

Préparation d'échantillons - Divers - Interchim®

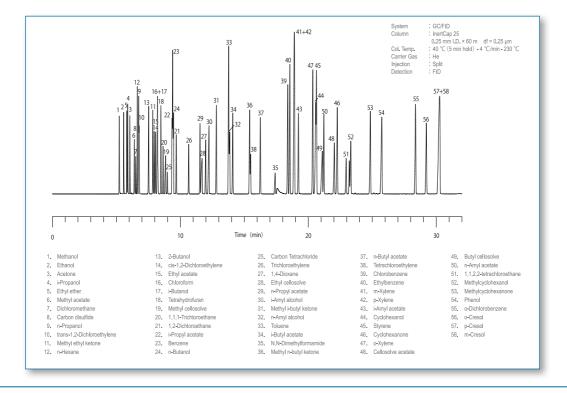


Colonnes InertCap Pesticides

5 % Phényl 95 % Méthylpolysiloxane (polymère Phénylarylène) - USP : G27


Applications: screening de pesticides en GC/MS.

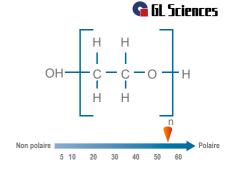
Ø int.	Film	θ limite °C	30 m
0,25 mm	0,20 µm	325/350	1010-15141

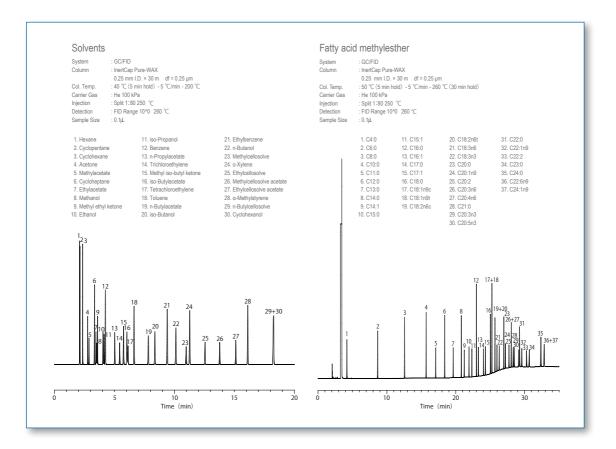


Colonnes InertCap 25

25 % Diphényl 75 % Diméthylpolysiloxane - USP: G28

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,25 µm	280/300	1010-62122	1010-62142	1010-62162
	0,50 µm	280/300	1010-62124	1010-62144	1010-62164
	1,00 µm	260/280	1010-62125	1010-62145	1010-62165
0,32 mm	0,25 µm	280/300	1010-62222	1010-62242	1010-62262
	0,50 µm	280/300	1010-62224	1010-62244	1010-62264
	1,00 µm	260/280	1010-62225	1010-62245	1010-62265
0,53 mm	1,00 µm	300/320	1010-62425	1010-62445	

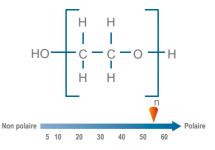



Colonnes InertCap Pure-WAX

100 % Polyéthylène Glycol (PEG) - USP: G16

Applications : Analyses de composés acides ou basiques non résolus par colonnes WAX classiques.

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,25 µm	250 / 260	•••	1010-68142	1010-68162
			•••	1010-68490 (précolonne intégrée de 2 m)	
			•••	1010-68491 (précolonne intégrée de 5 m)	
				1010-68494 (précolonne intégrée de 10 m)	
	0,50 µm	250/260		1010-68144	1010-68164
0,32 mm	0,25 µm	250/260		1010-68242	1010-68262
	0,50 µm	250/260		1010-68244	1010-68264
0,53 mm	1,00 µm	240/240	1010-68425	1010-68445	1010-68465

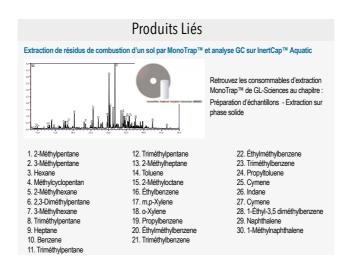

Colonnes InertCap WAX-HT

Polyéthylène Glycol (PEG) - USP: G16

Phases similaires : DB-WAXetr, SolGel-WAX.

Applications : Composés polaires comme solvants.

Ø int.	Film	θ limite °C	30 m	60 m
0,25 mm	0,25 µm	270/280	1010-68542	1010-68562
	0,50 µm	260/270	1010-68544	1010-68564
0,32 mm	0,25 µm	270/280	1010-68642	1010-68662
	0,50 µm	260/270	1010-68644	1010-68664
0,53 mm	1,00 µm	250/260	1010-68725	1010-68745

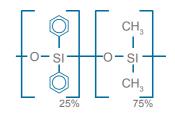


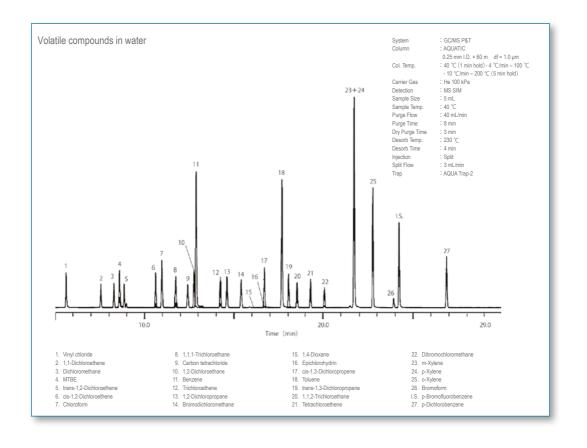
Colonnes InertCap pour Amines

Phases similaires: CP-Volamine.

Applications: Alcools, composés aminés C2 à C10, composés basiques.

Ø int.	θ limite °C	15 m	30 m	60 m
0,32 mm	265/300	1010-69229	1010-69249	1010-69269

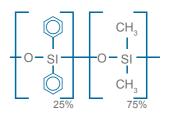

Colonnes InertCap Aquatic


25 % Phényl 75 % Méthylpolysiloxane - USP: G28

Phases similaires: Equivalent to USP Phase G28.

Applications: Analyses des composés organiques volatils (COV) dans l'eau (Purge and Trap). Pour garantir l'efficacité et la reproductibilité de ces colonnes spécifiques, chaque colonne est livrée avec un chromatogramme test qui inclue 33 produits.

Ø int.	Film	θ limite °C	60 m	75 m
0,25 mm	1,00 µm	200/220	1010-29165	
0,32 mm	1,40 µm	200/220	1010-29266	
0,53 mm	2,00 µm	200/220		1010-29477



Colonnes Aquatic-2

25 % Phényl 75 % Méthylpolysiloxane - USP : G28

Applications: COV dans l'eau.

Ø int.	Film	θ limite °C	30 m	60 m	75 m
0,25 mm	1,40 µm	260/260	1010-19146	1010-19166	
0,32 mm	1,80 µm	260/260	1010-19247	1010-19267	
0,53 mm	3,00 µm	260/260	1010-19448		1010-19478

Les colonnes capillaires OHIO VALLEY, distribuées en exclusivité sur la France par Interchim®, sont des colonnes de très haute qualité fabriquées à partir des phases OV originales.

La société OHIO VALLEY Specialty Chemical, "inventeur" des célèbres phases OV est experte dans la synthèse des phases silicones depuis plus de 30 ans.

Son avance dans ce domaine est indéniable et lui permet de proposer des colonnes d'une efficacité supérieure possédant une stabilité et reproductibilité parfaites.

- Phases greffées résistantes aux solvants
 Reproductibilité parfaite
- Disponibles en 15, 30 et 60 mètres
- Meilleur rapport qualité-prix
- Haute stabilité thermique

Colonnes OV-1 100 % Diméthylpolysiloxane - USP: G2

Applications: Amines, Parfums, hydrocarbures, PCB, Pesticides et Phénols.

CH₃	
-si-o-	
CH ₃	n
0.13	

Ø int.	Film	θ limite °C	10 m	15 m	30 m	60 m
0,13 mm	0,13 µm	-60 à 330/350		115-4513		
0,25 mm	0,10 µm	-60 à 330/350		115-2501	130-2501	
	0,25 µm	-60 à 330/350		115-2502	130-2502	160-2502
	0,50 µm	-60 à 330/350		115-2503	130-2503	160-2503
	1,00 µm	-60 à 320/340		115-2504		160-2504
0,32 mm	0,10 µm	-60 à 330/350		115-3201	130-3201	160-3201
	0,25 µm	-60 à330/350		115-3202	130-3202	160-3202
	0,50 µm	-60 à330/350		115-3203	130-3203	160-3203
	1,00 µm	-60 à 320/340		115-3204	130-3204	160-3204
	1,50 µm	-60 à330/350		115-3210	130-3210	160-3210
	3,00 µm	-60 à 270/290		115-3205	130-3205	160-3205
	5,00 µm	-60 à 260/280		115-3206	130-3206	
0,42 mm	0,42 µm	-60 à 330/350		115-4542	130-4542	
0,45 mm	1,27 µm	-60 à 330/350				160-4527
0,53 mm	0,10 µm	-60 à 330/350		115-5301	130-5301	160-5301
	0,25 µm	-60 à 330/350	110-531	115-5302	130-5302	160-5302
	0,50 µm	-60 à 330/350		115-5303	130-6703	160-5303
	1,00 µm	-60 à 320/340		115-5304	130-5304	160-5304
	1,50 µm	-60 à 330/350		115-5310	130-5310	160-5310
	2,65 µm	-60 à 270/290	110-5365		130-5365	
	3,00 µm	-60 à 270/290		115-5311	130-5311	160-5311
	5,00 µm	-60 à 260/280		115-5312	130-5312	160-5312
1,27 mm	1,27 µm	-60 à 270/290		115-4527	130-4527	
2,55 mm	2,55 µm	-60 à 270/290		115-4555	130-4555	
4,25 mm	4,25 µm	-60 à 270/290		115-4525	130-4525	

Colonnes OV-1MS

100 % Diméthylpolysiloxane - USP : G2

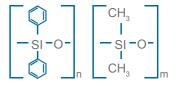
Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,10 µm	-60 à 330/360	115-3901	130-3901	160-2501
	0,25 µm	-60 à 330/360	115-3902	130-3902	160-3902
	0,50 µm	-60 à 330/360	115-3903	130-3903	
0,32 mm	0,10 µm	-60 à 330/360	115-4601	130-4601	
	0,25 µm	-60 à 330/360	115-4602	130-4602	
	0,50 µm	-60 à 330/360	115-4603	130-4603	•••
0,53 mm	0,50 µm	-60 à 330/360	115-6703		

Colonnes OV-5

5 % Phényl - 95 % Diméthylpolysiloxane - USP : G27

Applications: Alcaloïdes, aromatiques, drogues, FAME, herbicides, hydrocarbonés, composés halogénés et pesticides.

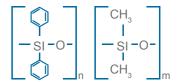
Ø int.	Film θ limite °C	10 m	15 m	30 m	60 m	
0,25 mm	0,10 µm -60 à 330/350		515-2501	530-2501	560-2501	
	0,25 µm -60 à 330/350		515-2502	530-2502	560-2502	
	0,50 µm -60 à 330/350		515-2503	530-2503	560-2503	
	1,00 µm -60 à 330/350		515-2504	530-2504	560-2504	
0,32 mm	0,10 µm -60 à 330/350		515-3201	530-3201	560-3201	
	0,25 µm -60 à 330/350		515-3202	530-3202	560-3202	
	0,50 µm -60 à 330/350		515-3203	530-3203	560-3203	
	1,00 µm -60 à 330/350		515-3204	530-3204	560-3204	
	1,50 µm -60 à 310/330		515-3210	530-3210	560-3210	
0,45 mm	0,42 µm -60 à 300/320		515-4542	530-4542		
	1,27 µm -60 à 300/320		515-4527	530-4527	•••	
0,53 mm	0,10 µm -60 à 320/340		515-5301	530-5301	560-5301	
	0,25 µm -60 à 320/340		515-5302	530-5302	560-5302	
	0,50 µm -60 à 320/340		515-5303	530-5303	560-5303	
	1,00 µm -60 à 320/340		515-5304	530-5304	560-5304	
	1,50 µm -60 à 320/340		515-5310	530-5310	560-5310	
	2,65 µm -60 à 270/290	510-5365		530-5365		
	3,00 µm -60 à 270/290			530-5311	560-5311	
	5,00 µm -60 à 270/290		515-5312	530-5312	560-5312	



Colonnes OV-5MS

5 % Phényl - 95 % Diméthylpolysiloxane - USP : G27

Ø int.	Film	θ limite °C	15 m	30 m
0,25 mm	0,10 µm	-60 à 330/360	515-3901	530-3901
	0,25 µm	-60 à 330/360	515-3902	530-3902
	0,50 µm	-60 à 330/360	515-3903	530-3903
	1,00 µm	-60 à 330/360		530-3904
0,32 mm	0,10 µm	-60 à 330/360	515-4601	530-4601
	0,25 µm	-60 à 330/360	515-4602	530-4602
	0,50 µm	-60 à 330/360	515-4603	530-4603
0,53 mm	0,50 µm	-60 à 330/360	515-6703	530-6703



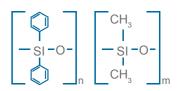
Colonnes OV-20

20 % Diphényl, 80 % Diméthylpolysiloxane

Applications: Boissons alcoolisées, aromatiques, composés volatils.

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,10 µm	-20 à 300/320	2015-2501	2030-2501	2060-2501
	0,25 µm	-20 à 300/320	2015-2502	2030-2502	2060-2502
	0,50 µm	-20 à 290/310	2015-2503	2030-2503	2060-2503
	1,00 µm	-20 à 280/300	2015-2504	2030-2504	2060-2504
0,32 mm	0,10 µm	-20 à 300/320	2015-3201	2030-3201	2060-3201
	0,25 µm	-20 à 300/320	2015-3202	2030-3202	2060-3202
	0,50 µm	-20 à 290/310	2015-3203	2030-3203	2060-3203
	1,00 µm	-20 à 280/300	2015-3204	2030-3204	2060-3204
	3,00 µm	-20 à 250/270	2015-3205	2030-3205	2060-3205
0,53 mm	0,10 µm	-20 à 260/280	2015-5301	2030-5301	2060-5301
	0,25 µm	-20 à 260/280	2015-5302	2030-5302	2060-5302
	0,50 µm	-20 à 260/280	2015-5303	2030-5303	2060-5303
	1,00 µm	-20 à 260/280	2015-5304	2030-5304	2060-5304
	1,50 µm	-20 à 250/270	2015-5310	2030-5310	2060-5310
	3,00 µm	-20 à 240/260	2015-5311	2030-5311	2060-5311

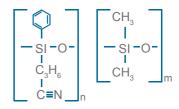
Produits Liés



35 % Diphényl, 65 % Diméthylpolysiloxane - USP: 42

Applications: PCB, pesticides, médicaments.

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,10 µm	40 à 300/320	3515-2500	3530-2500	3560-2500
	0,25 µm	40 à 300/320	3515-2502	3530-2502	3560-2502
	0,50 µm	40 à 300/320	3515-2503	3530-2503	3560-2503
	1,00 µm	40 à 280/300	3515-2504	3530-2504	3560-2504
0,32 mm	0,10 µm	40 à 300/320	3515-3200	3530-3200	3560-3200
	0,25 µm	40 à 300/320	3515-3202	3530-3202	3560-3202
	0,50 µm	40 à 300/320	3515-3203	3530-3203	3560-3203
	1,00 µm	40 à 300/320	3515-3204	3530-3204	3560-3204
	1,50 µm	40 à 280/300	3515-3210	3530-3210	3560-3210
0,45 mm	0,42 µm	40 à 300/320		3530-4542	
	0,85 µm	40 à 280/300	3515-4585	3530-4585	
0,53 mm	0,10 µm	40 à 280/300	3515-5300	3530-5300	3560-5300
	0,25 µm	40 à 280/300	3515-5302	3530-5302	3560-5302
	0,50 µm	40 à 280/300	3515-5303	3530-5303	3560-5303
	1,00 µm	40 à 280/300	3515-5304	3530-5304	3560-5304
	1,50 µm	40 à 260/280	3515-5310	3530-5310	3560-5310

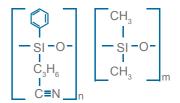


Colonnes OV-1301

6 % Cyanopropylphényl méthylpolysiloxane - USP: 43

Applications: Volatils organiques, échantillons pharmaceutiques, alcools, pesticides, PCB.

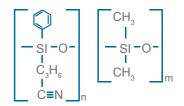
Ø int.	Film	θ limite °C	15 m	30 m	60 m
w iiit.			19 111	30 III	00 111
0,25 mm	0,10 µm	-20 à 280/300	815-2501	830-2501	860-2501
	0,25 µm	-20 à 280/300	815-2502	830-2502	860-2502
	0,50 µm	-20 à 280/300	815-2503	830-2503	860-2503
	1,00 µm	-20 à 280/300	815-2504	830-2504	860-2504
0,32 mm	0,10 µm	-20 à 280/300	815-3201	830-3201	860-3201
	0,25 µm	-20 à 280/300	815-3202	830-3202	860-3202
	0,50 µm	-20 à 280/300	815-3203	830-3203	860-3203
	1,00 µm	-20 à 280/300	815-3204	830-3204	860-3204
	1,80 µm	-20 à 260/280		830-3207	
0,53 mm	0,10 µm	-20 à 260/280	815-5301	830-5301	860-5301
	0,25 µm	-20 à 260/280	815-5302	830-5302	860-5302
	0,50 µm	-20 à 260/280	815-5303	830-5303	860-5303
	1,00 µm	-20 à 260/280	815-5304	830-5304	860-5304
	1,50 µm	-20 à 260/280	815-5310	830-5310	860-5310
	3,00 µm	-20 à 260/280	815-5311	830-5311	860-5311



6 % Cyanopropylphényl méthylpolysiloxane

Applications: Méthodes EPA 502.2 - Volatils organiques.

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	1,40 µm	-20 à 260		630-2514	660-2514
0,32 mm	1,80 µm	-20 à 260		630-3207	660-3207
0,45 mm	2,55 µm	-20 à 260		630-4525	
0,53 mm	3,00 µm	-20 à 260		630-5307	

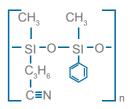


Colonnes OV-1701

14 % Cyanopropylméthyl méthylpolysiloxane - USP: G43

Applications: Volatils organiques, échantillons pharmaceutiques, alcools, pesticides, PCB.

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,10 µm	-20 à 280/300	415-2500	430-2500	460-2500
	0,15 µm	-20 à 280/300	415-2501	430-2501	460-2501
	0,25 µm	-20 à 280/300	415-2502	430-2502	460-2502
	0,50 µm	-20 à 280/300	415-2503	430-2503	460-2503
	1,00 µm	-20 à 280/300	415-2504	430-2504	460-2504
0,32 mm	0,10 µm	-20 à 280/300	415-3200	430-3200	460-3200
	0,15 µm	-20 à 280/300	415-3201	430-3201	460-3201
	$0,25~\mu m$	-20 à 280/300	415-3202	430-3202	460-3202
	0,50 µm	-20 à 280/300	415-3203	430-3203	460-3203
	1,00 µm	-20 à 280/300	415-3204	430-3204	460-3204
	1,80 µm	-20 à 260/280		430-3207	
0,53 mm	0,10 µm	-20 à 260/280	415-5300	430-5300	460-5300
	0,25 µm	-20 à 260/280	415-5302	430-5302	460-5302
	0,50 µm	-20 à 260/280	415-5303	430-5303	460-5303
	1,00 µm	-20 à 260/280	415-5310	430-5310	460-5310
	1,50 µm	-20 à 260/280	415-5311	430-5311	460-5311



50 % Cyanopropylméthyl - 50 % Phénylméthylpolysiloxane - USP: G7

Applications: FAME, PUFA, alditol, stérols neutres.

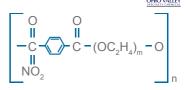
Ø int.	Film	θ limite °C	15 m	30 m
0,25 mm	0,10 µm	40 à 220/240	715-2500	730-2500
	0,25 µm	40 à 220/240	715-2502	730-2502
	0,50 µm	40 à 220/240	715-2503	730-2503
0,32 mm	0,10 µm	40 à 220/240	715-3200	730-3200
	0,25 µm	40 à 220/240	715-3202	730-3202
	0,50 µm	40 à 220/240	715-3203	730-3203
0,53 mm	0,10 µm	40 à 200/220	715-5300	
	0,25 µm	40 à 200/220	715-5302	730-5302
	0,50 µm	40 à 200/220	715-5303	730-5303
	1,00 µm	40 à 200/220	715-5310	730-5310

Colonnes CARBOWAX 20M

Polyéthylène Glycol: PEG - USP: G16

Applications: Alcools, aromatiques, huiles essentielles, glycol et solvants polaires.

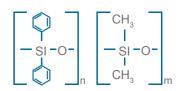
Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,10 µm	20 à 250/260	215-2500	230-2500	260-2500
	0,15 µm	20 à 250/260	215-2501	230-2501	260-2501
	0,25 µm	20 à 250/260	215-2502	230-2502	260-2502
	0,50 µm	20 à 250/260	215-2503	230-2503	260-2503
	1,00 µm	20 à 250/260	215-2504	230-2504	260-2504
0,32 mm	0,10 µm	20 à 250/260	215-3200	230-3200	260-3200
	0,15 µm	20 à 250/260	215-3201	230-3201	260-3201
	0,25 µm	20 à 250/260	215-3202	230-3202	260-3202
	0,50 µm	20 à 240/250	215-3203	230-3203	260-3203
	1,00 µm	20 à 230/240	215-3204	230-3204	260-3204
0,53 mm	0,25 µm	20 à 230/240	215-5302	230-5302	260-5302
	0,50 µm	20 à 230/240	215-5303	230-5303	260-5303
	1,00 µm	20 à 230/240	215-5310	230-5310	260-5310



PEG Modifié à l'acide nitrotéréphthalique - USP : G35

Applications: Acides gras libres (non dérivatisés).

Ø int.	Film	θ limite °C	15 m	30 m	60 m
Ø Int.	FIIIII	o ilmite "C	10 III	30 m	60 III
0,25 mm	0,10 µm	40 à 250	315-2501	330-2501	360-2501
	0,25 µm	40 à 250	315-2502	330-2502	360-2502
	0,50 µm	40 à 250	315-2503	330-2503	360-2503
0,32 mm	0,10 µm	40 à 250	315-3201	330-3201	360-3201
	0,25 µm	40 à 250	315-3202	330-3202	360-3202
	0,50 µm	40 à 250	315-3203	330-3203	360-3203
	1,00 µm	40 à 250	315-3204	330-3204	360-3204
0,53 mm	0,10 µm	40 à 250	315-5301	330-5301	360-5301
	0,25 µm	40 à 250	315-5302	330-5302	360-5302
	0,50 µm	40 à 250	315-5303	330-5303	360-5303
	1,00 µm	40 à 250	315-5310	330-5310	360-5310
	1,50 µm	40 à 250	315-5311	330-5311	360-5311



Colonnes OV-17

50 % Diphényl, 50 % Diméthylpolysiloxane - USP: G3

Applications: Herbicides, stéroïdes, screening de drogues.

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,10 µm	0 à 300/320	1715-2500		
	0,25 µm	0 à 300/320	1715-2502	1730-2502	
	0,50 µm	0 à 290/310	1715-2503	1730-2503	
0,32 mm	0,25 µm	0 à 300/320	1715-3202	1730-3202	
	0,50 µm	0 à 290/310	1715-3203	1730-3203	
	1,00 µm	0 à 280/300	1715-3204	1730-3204	1760-3204
0,53 mm	0,50 µm	0 à 270/290	1715-5303	1730-5303	
	1,00 µm	0 à 260/280	1715-5304	1730-5304	

Analyse GCColonnes capillaires - Perkin Elmer

Colonnes Elite 1

100 % Diméthylpolysiloxane

Phases similaires: DB-1, DB-1ht, HP-1, HP-101, Ultra-1, SPB-1, CP-Sil 5CB, CI-Sil5CBMS. RSL-150, RSL-160, Rtx-1, BP-1, CB-1, OV-1, DB-1, CB-1, C

007-1MS, SP-2100, SE-30.

Applications: Composés non polaires.

Ø int.	Film	θ limite °C	5 m	10 m/12 m*	15 m	20 m	25 m	30 m	40 m/50 m**	60 m	105 m
0,10 mm	0,10 mm 0,10 µm	-60 à 330/350		N9316058							
	0,40 µm	-60 à 330/350				N9316061					
0,18 mm	0,18 µm	-60 à 330/350		N9316001		N9316003					
	0,40 µm	-60 à 330/350		N9316002		N9316004			N9316005		
0,20 mm	0,33 µm	-60 à 330/350		N9316062*			N9316063		N9316064**		
0,25 mm	0,10 µm	-60 à 330/350			N9316006			N9316009		N9316012	
	0,25 µm	-60 à 330/350			N9316007			N9316010		N9316013	
	1,00 µm	-60 à 330/350			N9316008			N9316011		N9316014	
0,32 mm	0,10 µm	-60 à 330/350			N9316016			N9316022		N9316027	
	0,25 µm	-60 à 330/350			N9316017			N9316023		N9316028	
	0,52 µm	-60 à 330/350					N9316021			N9316691	
	1,00 µm	-60 à 320/340			N9316018			N9316024		N9316029	
	1,50 µm	-60 à 330/350								N9316580	
	3,00 µm	-60 à 280/300			N9316019			N9316025		N9316030	
	5,00 µm	-60 à 260/280			N9316020			N9316026		N9316031	
0,45 mm	0,13 µm	-60 à 340/360			N9316033						
	0,42 µm	-60 à 310/330			N9316037						
	1,27 µm	-60 à 310/330			N9316034			N9316038		N9316042	
	2,55 µm	-60 à 270/290			N9316035			N9316039			N9316043
	4,25 µm	-60 à 260/280	N9316032		N9316036			N9316040			
0,53 mm	0,15 µm	-60 à 320/340			N9316045						
	0,50 µm	-60 à 310/330			N9316049			N9316053			
	1,50 µm	-60 à 310/330			N9316046			N9316050		N9316054	
	3,00 µm	-60 à 270/290			N9316047			N9316051		N9315499	N9316692
	5.00 um	-60 à 270/290	N9316044		N9316048			N9316052			

^{*12} m / ** 50 m

Colonnes Elite-1 ht (haute température)

Ø int.	Film	θ limite °C	15 m	30 m
0,25 mm	0,1 µm	-60 à 380	N9316268	N9316269
0,32 mm	0,1 µm	-60 à 380	N9316270	N9316271

Colonnes Elite 5

5 % Diphényl Diméthylpolysiloxane

Phases similaires: DB-5, DB-5ms, DB-5ht, Ultra-2, SPB-5, CP-Sil8CB, RSL-200, Rtx-5, BP-5, CB-5, OV-5, 007-2(MPS-5), SE-52, SE-54, XTI-5, Rtx-5ms, PTE-5, HP-5ms.

Ø int.	Film	θ limite °C	10 m/12 m*	15 m	20 m	25 m	30 m	40 m	50 m	60 m
0,05 mm	0,05 µm	-60 à 325/350	N9316104							
0,10 mm	0,10 µm	-60 à 330/350			N9316108					
	0,40 µm	-60 à 320/340			N9316109					
0,18 mm	0,18 µm	-60 à 325/340	N9316066		N9316068					
	0,40 µm	-60 à 315/330	N9316067		N9316069			N9316071		
0,20 mm	0,33 µm	-60 à 330/350	N9316110*			N9316111			N9316112	
0,25 mm	0,10 µm	-60 à 330/350		N9316072			N9316075			N9316078
	0,25 µm	-60 à 330/350		N9316073			N9316076			N9316079
	1,00 µm	-60 à 320/340		N9316074			N9316077			N9316080
0,32 mm	0,10 µm	-60 à 330/350		N9316081			N9316085			N9316089
	0,25 µm	-60 à 330/350		N9316082			N9316086			N9316090
	0,52 µm	-60 à 330/350				N9316084				
	1,00 µm	-60 à 330/350		N9316083			N9316087		N9316088	N9316091
0,45 mm	0,42 µm	-60 à 310/330		N9316093			N9316096			
	1,27 µm	-60 à 310/330		N9316092			N9316094			
	4,25 µm	-60 à 270/290					N9316095			
0,53 mm	0,50 µm	-60 à 310/330		N9316099			N9316102			
	1,50 µm	-60 à 310/330		N9316098			N9316100			N9316103
	5,00 µm	-60 à 270/290					N9316101			

^{*12} m

Colonnes Elite 5HT (haute température)

Ø int.	Film	θ limite °C	15 m	30 m
0,25 mm	0,10 µm	-60 à 400	N9316272	N9316273
	0,25 µm	-60 à 400		N9316591
0,32 mm	0,10 µm	-60 à 400	N9316274	N9316275

Colonnes Elite-5MS

5 % DiphénylDiméthylpolysiloxane

Ø int.	Film	θ limite °C	12 m	15 m	20 m	25 m	30 m	40 m	50 m	60 m
0,18 mm	0,18 µm	-60 à 325/340			N9316276			N9316277		
0,20 mm	0,33 µm	-60 à 330/350	N9316301			N9316302			N9316303	
0,25 mm	0,10 µm	-60 à 330/350		N9316278			N9316281			N9316285
	0,25 µm	-60 à 330/350		N9316279			N9316282			N9316286
	0,50 µm	-60 à 330/350					N9316284			
	1,00 µm	-60 à 325/350		N9316280			N9316283			N9316287
0,32 mm	0,10 µm	-60 à 330/350					N9316292			N9316296
	0,25 µm	-60 à 330/350		N9316289			N9316293			N9316297
	0,50 µm	-60 à 330/350					N9316295			
	0,52 µm	-60 à 330/350				N9316291				
	1,00 µm	-60 à 330/350		N9316290			N9316294			N9316298
0,53 mm	1,50 µm	-60 à 310/330		N9316299			N9316300			

Colonnes Elite 17, 17HT, 17MS

50 % PhénylMéthylpolysiloxane

Type de colonne	Ø int.	Film	θ limite °C	5 m	10 m	15 m	20 m	30 m	60 m
	0,05 mm	0,05 µm	40 à 280/300		N9316138				
		0,10 µm	40 à 280/300		N9316139				
	0,10 mm	0,10 µm	40 à 280/300		N9316140		N9316142		
		0,20 µm	40 à 280/300		N9316141		N9316143		
	0,18 mm	0,18 µm	40 à 300/320		N9316113		N9316115		
		0,30 µm	40 à 280/300		N9316114		N9316116		
	0,25 mm	0,15 µm	40 à 300/320			N9316117		N9316120	
Elia 47		0,25 µm	40 à 300/320			N9316118		N9316121	N9316123
Elite-17		0,50 µm	40 à 290/310			N9316119		N9316122	
	0,32 mm	0,15 µm	40 à 300/320			N9316124		N9316127	
		0,25 µm	40 à 300/320			N9316125		N9316128	
		0,50 µm	40 à 290/310			N9316126		N9316129	
	0,45 mm	0,85 µm	40 à 270/290			N9316131		N9316132	N9316133
		1,70 µm	40 à 260/280	N9316130					
	0,53 mm	1,00 µm	40 à 260/280			N9316135		N9316136	N9316137
		2,00 µm	40 à 250/270	N9316134					
Elite-17HT	0,25 mm	0,15 µm	40 à 300/320			N9316263		N9316264	
Elite-1/H1	0,32 mm	0,15 µm	40 à 300/320			N9316265		N9316266	
	0,18 mm	0,18 µm	40 à 320/340				N9316534		
Tito 47MC	0,25 mm	0,15 µm	40 à 300/320			N9316535		N9316537	
Elite-17MS		0,25 µm	40 à 300/320			N9316536		N9316538	N931653
	0,32 mm	0,15 µm	40 à 300/320			N9316540		N9316542	

Elite 35, 35ms

35 % PhénylMéthylpolysiloxane

Type de colonne	Ø int.	Film	θ limite °C	15 m	25 m	30 m	60 m
	0,25 mm	0,25 µm	40 à 300/320			N9316145	
	0,32 mm	0,25 µm	40 à 300/320			N9316146	
		0,50 µm	40 à 290/310			N9316147	
	0,45 mm	0,42 µm	40 à 290/310			N9316150	
		0,85 µm	40 à 280/300	N9316148		N9316149	
	0,53 mm	0,50 µm	40 à 260/280			N9316153	
		1,00 µm	40 à 260/280	N9316151		N9316152	
	0,20 mm	0,33 µm	50 à 320/340		N9316446		
	0,25 mm	0,25 µm	50 à 320/340	N9316436		N9316438	N9316439
Elite-17MS	0,32 mm	0,25 µm	50 à 320/340	N9316440		N9316441	N9316442
	0,53 mm	0,50 µm	50 à 300/320			N9316445	
		1,00 µm	50 à 290/310	N9316443		N9316444	

Colonnes Elite-200

Trifluoropropylméthyl

Ø int.	Film	θ limite °C	10 m	15 m	20 m	30 m	40 m	60 m
0,18 mm	0,20 µm	-20 à 310/330			N9316611		N9316612	
	0,40 µm	-20 à 310/330	N9316613		N9316614		N9316615	
	1,00 µm	-20 à 290/310			N9316650			
0,25 mm	0,10 µm	-20 à 320/340		N9316616		N9316617		
	0,25 µm	-20 à 320/340		N9316618		N9316619		
	0,50 µm	-20 à 310/330		N9316620		N9316621		
	1,00 µm	-20 à 290/310		N9316622		N9316623		N9316624
0,32 mm	0,25 µm	-20 à 320/340		N9316625		N9316626		
	0,50 µm	-20 à 310/330		N9316627		N9316628		
	1,00 µm	-20 à 290/310		N9316629		N9316630		N9316631
	1,50 µm	-20 à 280/300		N9316632		N9316633		N9316634
0,53 mm	0,25 µm	-20 à 310/330		N9316635		N9316636		N9316637
	0,50 µm	-20 à 300/320		N9316638		N9316639		N9316640
	1,00 µm	-20 à 290/310		N9316641		N9316642		N9316643
	1,50 µm	-20 à 280/300		N9316644		N9316645		N9316646
	3,00 µm	-20 à 260/280		N9316647		N9316648		N9316649

Colonnes Elite-225

50 % Cyanopropylméthyl-Phénylméthylpolysiloxane

Ø int.	Film	θ limite °C	10 m	15 m	20 m	30 m
0,10 mm	0,10 µm	45 à 220/240			N9316187	
0,18 mm	0,20 µm	45 à 220/240	N9316172		N9316173	•••
0,25 mm	0,15 µm	45 à 220/240		N9316174		N9316176
	0,25 µm	45 à 220/240		N9316175		N9316177
	0,32 µm	45 à 220/240		•••	•••	N9316181
0,32 mm	0,15 µm	45 à 220/240		N9316178	•••	N9316180
	0,25 µm	45 à 220/240		N9316179		
0,53 mm	1,00 µm	45 à 200/220				N9316185

Colonnes Elite-502.2 - Analyse des volatils (EPA 502.2)

Ø int.	Film	θ limite °C	60 m	75 m	105 m
0,25 mm	1,40 µm	0 à 250/270	N9316498	•••	
0,45 mm	2,55 µm	0 à 250/270		N9316188	N9316189
0.53 mm	3.00 um	0 à 250/270			N9316190

Colonnes Elite-608 - Analyses des semi-volatils (EPA608)

Ø int.	Film	θ limite °C	15 m	30 m
0,32 mm	0,50 µm	40 à 290/310		N9316191
0,45 mm	0,42 µm	40 à 270/290	N9316194	N9316195
	0,70 µm	40 à 260/280	N9316192	N9316193
0,53 mm	0,50 µm	40 à 270/290	N9316198	N9316199
	0,83 µm	40 à 260/280	N9316196	N9316197

Colonnes Elite 624 - Analyse des volatils (EPA 624)

Ø int.	Film	θ limite °C	20 m	30 m	60 m	75 m
0,18 mm	1,00 µm	-20 à 240	N9316200			
0,25 mm	1,40 µm	-20 à 240		N9316201	N9316202	
0,32 mm	1,80 µm	-20 à 240		N9316203	N9316204	
0,45 mm	2,55 µm	-20 à 240				N9316206
0.53 mm	3.00 um	-20 à 240		N9316207		N9316208

Colonnes Elite-1301

6 % Cyanopropylphényl-Méthylpolysiloxane

Ø int.	Film	θ limite °C	10 m	15 m	20 m	30 m	60 m
0,18 mm	0,40 µm	-20 à 280	N9316210		N9316211		
0,25 mm	0,25 µm	-20 à 280		N9316212		N9316214	N9316216
	1,00 µm	-20 à 260/280		N9316213		N9316215	N9316217
0,32 mm	0,25 µm	-20 à 280		N9316218		N9316220	N9316222
	1,00 µm	-20 à 260/280	•••	N9316219		N9316221	N9316223
0,45 mm	0,85 µm	-20 à 260/280		N9316224		N9316225	
0,53 mm	1,00 µm	-20 à 260/280		N9316226		N9316227	
	3,00 µm	-20 à 260/280				N9316687	

Colonnes Elite-1701

14 % Cyanopropylphényl-Méthylpolysiloxane

Ø int.	Film	θ limite °C	10 m	15 m	20 m	30 m	50 m	60 m
0,05 mm	0,05 µm	-20 à 280	N9316257					
	0,20 µm	-20 à 280	N9316258					
0,10 mm	0,10 µm	-20 à 280			N9316259			
	0,40 µm	-20 à 280			N9316260			
0,18 mm	0,40 µm	-20 à 280	N9316228		N9316229			
0,25 mm	0,15 µm	-20 à 280		N9316230				N9316236
	0,25 µm	-20 à 280		N9316231		N9316234		N9316237
	1,00 µm	-20 à 260/280		N9316232		N9316235		N9316238
0,32 mm	0,15 µm	-20 à 280		N9316239		N9316242		N9316246
	0,25 µm	-20 à 280		N9316240		N9316243		N9316247
	1,00 µm	-20 à 260/280		N9316241		N9316244	N9316245	N9316248
0,45 mm	0,42 µm	-20 à 260/280		N9316250		N9316252		
	0,85 µm	-20 à 260/280		N9316249		N9316251		
0,53 mm	0,50 µm	-20 à 260/280		N9316254				
	1,00 µm	-20 à 260/280		N9316253		N9316255		

Elite Wax

Polyéthylène Glycol

Ø int.	Film	θ limite °C	5 m	10 m	15 m	20 m	30 m	40 m	60 m
0,05 mm	$0.05 \mu m$	20 à 240/250		N9316430					
	0,10 µm	20 à 240/250		N9316431					
0,10 mm	0,10 µm	20 à 240/250		N9316432		N9316434			
	0,20 µm	20 à 240/250				N9316435			
0,18 mm	0,18 µm	20 à 240/250		N9316394		N9316396			
	0,30 µm	20 à 240/250		N9316395				N9316398	
0,25 mm	0,15 µm	20 à 250			N9316399		N9316402		N9316405
	0,25 µm	20 à 250			N9316400		N9316403		N9316406
	0,50 µm	20 à 250			N9316401		N9316404		N9316407
0,32 mm	0,15 µm	20 à 250			N9316408		N9316411		
	0,25 µm	20 à 250			N9316409		N9316412		N9316416
	0,50 µm	20 à 250			N9316410		N9316413		N9316417
0,45 mm	0,42 µm	20 à 250			N9316420				
	0,85 µm	20 à 240/250			N9316419		N9316421		N9316423
	1,70 µm	50 à 230	N9316418						
0,53 mm	0,50 µm	20 à 250			N9316426		N9316428		
	1,00 µm	20 à 240/250			N9316425		N9316427		N9316429
	2,00 µm	50 à 230	N9316424						

Elite Wax ETR

Carbowax® avec silice polaire désactivée

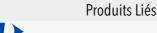
Ø int.	Film	θ limite °C	5 m	15 m	30 m	50 m	60 m
0,25 mm	0,25 µm	40 à 250		N9316547	N9316549		N9316551
	0,50 µm	40 à 250		N9316548	N9316550		
0,32 mm	0,25 µm	40 à 250		N9316552	N9316555		N9316559
	0,50 µm	40 à 250		N9316553	N9316556		N9316560
	1,00 µm	40 à 240/250		N9316554	N9316557	N9316558	N9316561
0,45 mm	0,85 µm	40 à 240		N9316563	N9316564		N9316565
	1,70 µm	40 à 230/250	N9316562				
0,53 mm	1,00 µm	40 à 240/250		N9316567	N9316569		N9316571
	2,00 µm	40 à 220/230	N9316566	N9316568	N9316570		

Colonnes Elite BAC (Blood Alcohol Analysis)

6 % Cyanopropylphényl-Méthylpolysiloxane

Type de colonne	Ø int. Film	10 m	15 m	30 m
	0,18 mm 1,00 µm	N9315075		•••
BAC 1 ADVANTAGE	0,32 mm 1,80 µm			N9315071
	0,53 mm 3,00 µm			N9315072
	0,18 mm 0,34 µm	N9315076		•••
BAC 2 ADVANTAGE	0,32 mm 0,60 µm			N9315073
	0,53 mm 1,00 μm			N9315074
BAC1	0,32 mm 1,80 µm		N9316693	N9316579
DACI	0,53 mm 3,00 µm			N9316578
BAC2	0,32 mm 1,20 µm			N9316577

Colonnes Elite CLPesticides


Type de colonne	Ø int.	Film	θ limite °C	15 m	30 m
	0,25 mm	0,20 µm	340	N9316667	N9316668
		0,25 µm	340	N9316661	N9316662
Elite-CLPesticides	0,32 mm	0,25 µm	340	N9316669	N9316670
		0,50 µm	340	N9316663	N9316664
	0,53 mm	0,50 µm	340	N9316665	N9316666
Elite-CLPesticides 2	0,25 mm	1,00 µm	340	N9316674	
Elite-GLPesticides 2	0,53 mm	0,42 µm	340		N9316672

Elite PLOT

Type de colonne	Applications	Ø int.	θ limite °C	30 m	50 m
Elite-Alumina PLOT	Analyse des hydrocarbures de faible poids moléculaires	0,53 mm	-60 à 200	N9316304	N9316305
Elite-Alumina/KCI PLOT		0,53 mm	jusqu'à 200		N9316544
Elite-Molesieve PLOT	Analyse des gaz permanents	0,53 mm	-60 à 300	N9316361	
Elite-Q PLOT	Anglyses de goz légers et hydroeithures	0,32 mm	-60 à 250	N9316359	
Elite-Q PLOT	Analyses de gaz légers et hydrocarbures	0,53 mm	-60 à 250	N9316360	

Velocity

Type de colonne		Ø int.	Film	θ limite °C	30 m	50 m	50 m
		0,25 mm	0,25 µm	350	N9306319	N9306312	N9306320
			1,00 µm	350	N9306310	N9306323	N9306328
Velocity-1	100% Diméthyl Polysiloxane	0,32 mm	0,25 µm	350		N9306318	
			1,00 µm	350		N9306321	N9306324
			3,00 µm	350		N9306329	
		0,25 mm	0,25 µm	350		N9306311	
		0,32 mm	0,25 µm	350	N9306325	N9306313	
Velocity-5	5 % Diphényl - 95 % DiméthylPolysiloxane		1,00 µm	350		N9306316	
		0,53 mm	0,50 µm	350		N9306326	
			1,50 µm	340		N9306327	
Valacity 624		0,32 mm	1,80 µm			N9306330	
Velocity-624		0,53 mm	3,00 µm			N9306331	N9306332
		0,25 mm	0,25 µm	250		N9306315	
Valenity MAY	400 0/ B 1 //1 1) 01 1	0,32 mm	0,25 µm	250		N9306314	
Velocity-WAX	100 % Polyéthylène Glycol		0,50 µm	250		N9306317	
		0,53 mm	1,00 µm	250		N9306322	

Reportez-vous au chapitre **Consommables** - Accessoires GC - Pièces détachées Perkin Elmer

Colonnes Capillaires Quadrex

Fabricant américain de colonnes capillaires depuis 1976.

Large gamme disponible de phases, de diamètre interne (de 0,10 mm à 0,53 mm) et d'épaisseur de film (de 0,10 µm à 8,00 µm).

Non Polaire	Légèrement Polaire	Moyennement Polaire	Polaire	PLOT
007-1	007-10	007-17	007-225	PLT-5A
007-17	007-1301	007-1701	007-23	PLT-AL2O3
007-1HT	007-20	007-17MS	007-CW	PLT-Q
007-1MS	007-502	007-35	007-FFAP	PLT-U
007-5	007-608	007-35MS	007-BTRCW	
007-5HT	007-624	007-50HT		
007-5MS		007-65HT		

Liste complète sur demande.

Exemples de références :

007-1-30V-5.0F	U59870	QUADREX 007-1 30 m x 0,53 mm x 5,00 µm GC COLUMN
007-5-30-0.25F	AH8550	QUADREX 007-5 30 m x 0,25 mm x 0,25 µm GC COLUMN
007-624-30W-3.0F	Q65260	QUADREX 007-624 30 m x 0,32 mm x 3,00 µm GC COLUMN
007-FFAP-10V-1.0F	AI6550	QUADREX 007-FFAP 10 m x 0,53 mm x 1,00 µm GC COLUMN

Colonnes Rxi®

La technologie 3-en-1 garantit aux colonnes GC Rxi® un "bleeding" ultra faible, une inertie incomparable et une reproductibilité exceptionnelle.

Ces qualités permettent d'atteindre des limites de détection inégalées et font des colonnes Rxi[®] un choix évident pour les analyses de traces les plus exigeantes.

Colonnes Rxi®-1ms

Crossbond® diméthyle polysiloxane - USP: G2

Phases similaires: HP-1, HP-1ms, HP-1msUI, DB-1, DB-1ms, DB-1msUI, Ultra-1, VF-1ms, CP-Sil 5 CB, ZB-1, ZB-1ms.

Applications: stupéfiants, huiles essentielles, hydrocarbures, pesticides, PCB, composés soufrés, amines, impuretés dans les solvants, distillation simulée, composés oxygénés, carburants, gaz de raffinerie.

Ø int.	Film	θ limite °C	2 m	10 m	12 m	15 m	20 m	25 m	30 m	50 m	60 m
0,10 mm	0,10 µm	-60 à 330/350		13301							
0,15 mm	0,15 µm	-60 à 330/350	15114	43800			43801				
	2,00 µm	-60 à 330/350					43802				
0,18 mm	0,18 µm	-60 à 330/350	15120				13302				
	0,36 µm	-60 à 330/350					13311				
0,20 mm	0,33 µm	-60 à 330/350			13397			13398		13399	
0,25 mm	0,25 µm	-60 à 330/350	15127			13320			13323		13326
	0,50 µm	-60 à 330/350				13335			13338		13341
	1,00 µm	-60 à 330/350				13350			13353		13356
0,32 mm	0,25 µm	-60 à 330/350				13321			13324		13327
	0,50 µm	-60 à 330/350				13336			13339		13342
	1,00 µm	-60 à 330/350							13354		13357
	4,00 µm	-60 à 330/350							13396		
0,53 mm	0,50 µm	-60 à 330/350				13337			13340		
	1,00 µm	-60 à 330/350				13352			13355		
	1,50 µm	-60 à 330/350				13367			13370		13373

Colonnes Rxi®-5 ms

Crossbond® diphényle diméthyle polysiloxane - USP: G27

Phases similaires: HP-5, HP-5ms, DB-5, Ultra-2, CP-Sil 8 CB, ZB-5, ZB-5ms.

Applications: Composés semi-volatils, phénols, amines, solvants résiduels, stupéfiants, pesticides, PCB et impuretés dans les solvants.

Ø int.	Film	θ limite °C	10 m	12 m	15 m	20 m	25 m	30 m	50 m	60 m
0,10 mm	0,10 µm	-60 à 330/350	13401							
0,18 mm	0,18 µm	-60 à 330/350				13402				
	0,30 µm	-60 à 330/350				13409				
	0,36 µm	-60 à 330/350				13411				
0,20 mm	0,33 µm	-60 à 330/350		13497			13498		13499	
0,25 mm	0,25 µm	-60 à 330/350			13420			13423		13426
	0,40 µm	-60 à 330/350						13481		
	0,50 µm	-60 à 330/350			13435			13438		13441
	1,00 µm	-60 à 330/350			13450			13453		13456
0,32 mm	0,25 µm	-60 à 330/350			13421			13424		13427
	0,50 µm	-60 à 330/350			13436			13439		13442
	1,00 µm	-60 à 330/350			13451			13454		13457
0,53 mm	0,25 µm	-60 à 330/350			13422			13425		
	0,50 µm	-60 à 330/350			13437			13440		
	1,00 µm	-60 à 330/350			13452			13455		
	1,50 µm	-60 à 330/350			13467			13470		

RESTEK

Colonnes Rxi®-5Sil MS

1,4-bis(diméthylesiloxy)phénylène diméthyle polysiloxane

Phases similaires: DB-5ms, DB-5msUI, VF-5ms, CP-Sil 8 CB, ZB-5msi, Rtx-5Sil MS.

Applications: hydrocarbures chlorés, phtalates, phénols, amines, pesticides organochlorés, pesticides organophosphorés, stupéfiants.

Ø int.	Film	θ limite °C	2 m	10 m	15 m	20 m	30 m	40 m	60 m
0.10 mm	0,10 µm	-60 à 320/350		43601					
0,15 mm	0,15 µm	-60 à 320/350	15113	43815		43816			
•	2,00 µm	-60 à 320/350				43817			
0,18 mm	0,10 µm	-60 à 320/350							43607
	0,18 µm	-60 à 320/350	15119			43602		43605	
	0,36 µm	-60 à 320/350				43604			
0,25 mm	0,10 µm	-60 à 320/350			13605		13608		
	0,25 µm	-60 à 320/350	15126		13620		13623		13626
	0,50 µm	-60 à 320/350			13635		13638		
	1,00 µm	-60 à 320/350			13650		13653		13697
0,32 mm	0,25 µm	-60 à 320/350			13621		13624		
	0,50 µm	-60 à 320/350					13639		
	1,00 µm	-60 à 320/350					13654		
0,53 mm	1,50 µm	-60 à 320/350					13670		

Colonnes Rxi®-XLB

Phase de faible polarité

Phases similaires: DB-XLB, VF-Xms, MR1, ZB-XLB.

Applications: Pesticides, PCB, HAP.

Ø int.	Film	θ limite °C	2 m	15 m	20 m	30 m	60 m
0,15 mm	0,15 µm	30 à 340/360	15115				
0,18 mm	0,18 µm	30 à 340/360	15121		43702		
0,25 mm	0,10 µm	30 à 340/360		13705		13708	
	0,25 µm	30 à 340/360	15128	13720		13723	13726
	0,50 µm	30 à 340/360				13738	
	1,00 µm	30 à 340/360				13753	
0,32 mm	0,25 µm	30 à 340/360				13724	13727
	0,50 µm	30 à 340/360				13739	
0,53 mm	0,50 µm	30 à 340/360				13740	

Produits Liés

Besoin d'un assortiment de raccords pour vos lignes de gaz, rendez vous au chapitre Consommables - Magic Box $^{\text{TM}}$

Colonnes Rxi®-35SilMS

Phase de polarité intermédiaire Crossbond®

Phases similaires: DB-35ms, DB-35msUI, VF-35ms, MR2.

Applications: Composés pharmaceutiques, pesticides, herbicides, PCB, phénols.

Ø int.	Film	θ limite °C	15 m	30 m
0,25 mm	0,25 µm	50 à 340/360	13820	13823
	0,50 µm	50 à 340/360	13835	13838
	1,00 µm	50 à 340/360		13853
0,32 mm	0,25 µm	50 à 340/360	13821	13824
	0,50 µm	50 à 340/360	13836	13839
	1,00 µm	50 à 320/340		13854
0,53 mm	0,50 µm	50 à 340/360	13837	
	1,00 µm	50 à 325/340		13855
	3,00 µm	50 à 280/300		13859

Colonnes Rxi®-17Sil MS

Phase de polarité intermédiaire Crossbond® - USP : G3

Phases similaires: DB-17ms, VF-17ms, CP-Sil 24 CB, ZB-50.

Applications: HAP.

Ø int.	Film	θ limite °C	10 m	15 m	20 m	30 m	60 m
0,15 mm	$0,15~\mu m$	40 à 340/360	43820		43821		
0,18 mm	0,18 µm	40 à 340/360			14102		
	0,36 µm	40 à 340/360			14111		
0,25 mm	0,25 µm	40 à 340/360		14120		14123	14126
0,32 mm	0,25 µm	40 à 340/360		14121		14124	

Colonnes Rxi®-PAH

Phase unique de polarité intermédiaire

Applications: HAP.

Ø int.	Film	θ limite °C	30 m	40 m	60 m
0,18 mm	0,07 µm	360		49316	
0,25 mm	0,10 µm	360	49318		49317

Colonnes Rxi®-624Sil MS

Phase de polarité intermédiaire ; Crossbond® (6 %-cyanopropylephényle)-méthylepolysiloxane

Phases similaires: DB-624, VF-624ms, CP-Select 624 CB, ZB-624.

Applications: COV, solvants résiduels pharmaceutiques.

Ø int.	Film	θ limite °C	20 m	30 m	60 m	75 m	105 m
0,18 mm	1,00 µm	-20 à 300/320	13865				
0,25 mm	1,40 µm	-20 à 300/320		13868	13869		
0,32 mm	1,80 µm	-20 à 300/320		13870	13872		
0,53 mm	3,00 µm	-20 à 300/320		13871	13873	13874	13875

Colonnes Rxi®-1HT

Phase apolaire, Crossbond® diméthyle polysiloxane

Phases similaires: DB-1ht, ZB-1HTinferno.

Applications: hydrocarbures à haut poids moléculaire.

Ø int.	Film	θ limite °C	15 m	30 m
0,25 mm	0,10 µm	-60 à 400	13950	13951
	0,25 µm	-60 à 400		13952
0,32 mm	0,10 µm	-60 à 400	13953	13954
	0,25 µm	-60 à 400		13955
0,53 mm	0,15 µm	-60 à 380/400		

Colonnes Rxi®-5HT

Phase de faible polarite, diphényle diméthyle polysiloxane

Phases similaires: DB-5ht, VF-5ht, ZB-5HTinferno.

Ø int.	Film	θ limite °C	15 m	30 m
0,25 mm	0,10 µm	-60 à 400	13905	13908
	0,25 µm	-60 à 400	13911	13923
0,32 mm	0,10 µm	-60 à 400	13906	13909
	0,25 µm	-60 à 400		13924
0,53 mm	0,15 µm	-60 à 380/400		13910



Phase apolaire, Crossbond® diméthyle polysiloxane - USP: G1, G2, G38

Phases similaires: HP-1, DB-1, CP-Sil 5 CB, ZB-1.

Applications: Impuretés dans les solvants, PCB, distillation simulée, stupéfiants, gaz, gaz naturel, composés soufrés, huiles essentielles, hydrocarbures, composés semi-volatils, pesticides et composés oxygénés.

Ø int.	Film	θ limite °C	10 m	15 m	20 m	30 m	40 m	60 m	105 m
0,10 mm	0,10 µm	330/350	41101		41102				
	0,40 µm	330/350	41103		41104				
0,18 mm	0,20 µm	330/350	40101		40102		40103		
	0,40 µm	330/340	40110		40111		40112		
0,25 mm	0,10 µm	330/350		10105		10108		10111	10114
0,	0,25 µm	330/350		10120		10123		10126	10129
	0,50 µm	330/350		10135		10138		10141	10144
	1,00 µm	320/340		10150		10153		10156	10159
0,32 mm	0,10 µm	330/350		10106		10109		10112	
	0,25 µm	330/350		10121		10124		10127	
	0,50 µm	330/350		10136		10139		10142	
	1,00 µm	320/340		10151		10154		10157	10160
	1,50 µm	310/330		10166		10169		10172	10175
	3,00 µm	280/330		10181		10184		10187	10190
	4,00 µm	280/300				10198			
	5,00 µm	260/280		10176		10178		10180	
0,53 mm	0,10 µm	320/340				10110			
	0,25 µm	320/340		10122		10125		10128	
	0,50 µm	310/330		10137		10140		10143	
	1,00 µm	310/330		10152		10155		10158	
	1,50 µm	310/330		10167		10170		10173	
	3,00 µm	270/290		10182		10185		10188	10189
	5,00 µm	270/290		10177		10179		10183	10194
	7,00 µm	240/260		10191		10192		10193	

Phase de faible polarité, Crossbond® diphényle diméthyle polysiloxane - USP : G27, G36

Phases similaires: HP-5, DB-5, CP-Sil 8 CB, ZB-5.

Applications: Stupéfiants, impuretés dans les solvants, pesticides, hydrocarbures, PCB, huiles essentielles et semi-volatils.

Film	θ limite °C	10 m	15 m	20 m	30 m	40 m	60 m	105 m
0,10 µm	325/340	41201		41202				
0,40 µm	315/330			41204				
0,20 µm	325/340	40201		40202		40203		
0,40 µm	315/330	40210		40211				
0,25 µm	330/350		10220		10223		10226	10229
0,50 µm	330/350		12335		12338		10241	10244
1,00 µm	325/340		10250		10253		10256	
0,10 µm	330/350		10206		10209			
0,25 µm	330/350		10221		10224		10227	
0,50 µm	330/350		10236		10239		10242	
1,00 µm	325/340		12351		10254		10257	10260
1,50 µm	310/330				10269		10272	10275
3,00 µm	280/300		10281		10284		10287	10290
0,25 µm	320/340		10222		10225		10228	
0,50 µm	320/330				10240		10243	
1,00 µm	320/330		12352		12355		10258	
1,50 µm	310/330		10267		70270		10273	
3,00 µm	270/290		12382		12385		10288	
5,00 µm	270/290		10277		10279		10283	
	0,40 µm 0,20 µm 0,40 µm 0,40 µm 0,25 µm 0,50 µm 1,00 µm 0,10 µm 0,50 µm 1,00 µm 1,00 µm 1,50 µm 1,50 µm 1,50 µm 1,50 µm 1,50 µm 1,00 µm	0,10 µm 325/340 0,40 µm 315/330 0,20 µm 325/340 0,40 µm 315/330 0,25 µm 330/350 0,50 µm 330/350 1,00 µm 325/340 0,10 µm 330/350 0,25 µm 330/350 0,50 µm 330/350 1,00 µm 325/340 1,50 µm 310/330 3,00 µm 280/300 0,25 µm 320/340 0,50 µm 320/330 1,00 µm 320/330 1,50 µm 310/330 3,00 µm 270/290	0,10 µm 325/340 41201 0,40 µm 315/330 0,20 µm 325/340 40201 0,40 µm 315/330 40210 0,25 µm 330/350 0,50 µm 325/340 1,00 µm 325/340 0,10 µm 330/350 0,50 µm 330/350 1,00 µm 325/340 1,00 µm 325/340 1,50 µm 310/330 3,00 µm 280/300 0,25 µm 320/340 0,50 µm 320/330 1,00 µm 320/330 1,50 µm 310/330 1,50 µm 310/330 3,00 µm 270/290	0,10 µm 325/340 41201 0,40 µm 315/330 0,20 µm 325/340 40201 0,40 µm 315/330 40210 0,25 µm 330/350 10220 0,50 µm 325/340 10250 0,10 µm 325/340 10206 0,25 µm 330/350 10221 0,50 µm 330/350 10236 1,00 µm 325/340 12351 1,50 µm 310/330 10281 0,25 µm 320/340 10281 0,25 µm 320/340 10281 0,25 µm 320/330 10222 0,50 µm 320/330 10267 1,00 µm 320/330 10267 3,00 µm 270/290 12382	0,10 µm 325/340 41201 41202 0,40 µm 315/330 41204 0,20 µm 325/340 40201 40201 0,40 µm 315/330 40210 40211 0,25 µm 330/350 10220 0,50 µm 330/350 12335 1,00 µm 325/340 10250 0,10 µm 330/350 10206 0,25 µm 330/350 10221 0,50 µm 330/350 10236 1,00 µm 325/340 12351 1,50 µm 310/330 12351 1,50 µm 320/340 10281 0,50 µm 320/330 10222 0,50 µm 320/330 1,00 µm<	0,10 μm 325/340 41201 41202 0,40 μm 315/330 41204 0,20 μm 325/340 40201 40202 0,40 μm 315/330 40210 40211 0,25 μm 330/350 10220 10223 0,50 μm 330/350 12335 12338 1,00 μm 325/340 10250 10253 0,10 μm 330/350 10206 10209 0,25 μm 330/350 10221 10224 0,50 μm 330/350 10236 10239 1,00 μm 325/340 12351 10254 1,50 μm 310/330 12351 10269 3,00 μm 280/300 10281 10284	0,10 μm 325/340 41201 41202 0,40 μm 315/330 41204 0,20 μm 325/340 40201 40202 40203 0,40 μm 315/330 40210 40211 0,25 μm 330/350 10220 10223 0,50 μm 330/350 12335 12338 1,00 μm 325/340 10250 10253 0,10 μm 330/350 10206 10209 0,25 μm 330/350 10221 10224 0,50 μm 330/350 10236 10239 1,00 μm 325/340 12351 10254 1,50 μm 310/330	0,10 μm 325/340 41201 41202 0,40 μm 315/330 41204 0,20 μm 325/340 40201 40202 40203 0,40 μm 315/330 40210 40211 0,25 μm 330/350 10220 10223 10226 0,50 μm 330/350 12335 12338 10241 1,00 μm 325/340 10250 10209 10256 0,10 μm 330/350 10206 10209 0,25 μm 330/350 10221 10224 10227 0,50 μm 330/350 10236 10239 10242 1,00 μm 325/340 12351 10254 10257

Colonnes Rtx®-5MS

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,10 µm	330/350	12605	12608	12611
	0,25 µm	330/350	12620	12623	12626
	0,50 µm	330/350	12635	12638	12641
	1,00 µm	325/350	12650	12653	
0,32 mm	0,10 µm	330/350	12606	12609	
	0,25 µm	330/350	12621	12624	12627
	0,50 µm	330/350		12639	12642
	1,00 µm	325/350		12654	
0,53 mm	0,50 µm	320/340	12637	12640	
	1,00 µm	320/340	12652	12655	
	1,50 µm	310/330	12667	12670	

Phase de polarité intermédiaire, Crossbond® trifluoropropyleméthyle polysiloxane - USP : G6

Phases similaires: DB-210, DB-200, VF-200ms.

Applications: Solvants, Fréons®, alcools, cétones, silanes, glycols.

Ø int.	Film	θ limite °C	2 m	10 m	15 m	20 m	30 m	40 m	60 m	105 m
0,15 mm	0,15 µm	-20 à 320/340	15111	43835		43836				
0,18 mm	0,18 µm	-20 à 310/330	15117							
	0,20 µm	-20 à 310/330		45001		45002		45003		
	0,40 µm	-20 à 310/330				45011		45012		
0,25 mm	0,10 µm	-20 à 320/340					15008			
	0,25 µm	-20 à 320/340	15124		15020		15023		15026	15029
	0,50 µm	-20 à 310/330			15035		15038		15041	15044
	1,00 µm	-20 à 290/310			15050		15053		15056	15059
0,32 mm	0,10 µm	-20 à 320/340					15009			
	0,25 µm	-20 à 320/340			15021		15024		15027	
	0,50 µm	-20 à 310/330			15036		15039		15042	15045
	1,00 µm	-20 à 290/310			15051		15054		15057	15060
	1,50 µm	-20 à 280/300			15066		15069		15072	15075
0,53 mm	0,10 µm	-20 à 310/330			15007		15010			
	0,25 µm	-20 à 300/320			15022		15025			
	0,50 µm	-20 à 310/330			15037		15040		15043	
	1,00 µm	-20 à 290/310			15052		15055		15058	
	1,50 µm	-20 à 280/300			15067		15070		15073	
	3,00 µm	-20 à 260/280			15082		15085		15088	15091

Colonnes Rtx®-200MS

Ø int.	Film	θ limite °C	15 m	30 m
0,25 mm	0,10 µm	-20 à 320/340		15608
	0,25 µm	-20 à 320/340	15620	15623
	0,50 µm	-20 à 310/330	15635	15638
	1,00 µm	-20 à 290/310		15653
0,32 mm	0,25 µm	-20 à 320/340		15624
	0,50 µm	-20 à 320/340		15639
	1,00 µm	-20 à 290/310		15654
0,53 mm	0,50 µm	-20 à 320/340		15640
	1,00 µm	-20 à 290/310		15655
	1,50 µm	-20 à 290/310		15670

Produits Liés

Boite distributrice : Kit UptiVial™ Une seule référence pour vos flacons et vos bouchons et capsules, un prix attractif et une boite distributrice Disponible sur stock

Voir chapitre : Flacons & Capsules - UptiVial $^{\mathsf{TM}}$

Colonnes Rtx®-1301

Phase de polarité faible à intermédiaire, Crossbond® cyanopropylephényle diméthyle polysiloxane - USP : G43

Phases similaires: DB-1301, DB-624, VF-1301ms, VF-624ms, CP-1301, ZB-624.

Applications: Solvants résiduels, alcools, composés oxygénés, COV.

Ø int.	Film	θ limite °C	15 m	30 m	60 m	75 m	105 m
						73111	100 111
0,25 mm	0,25 µm	-20 à 280	16020	16023	16026		
	0,50 µm	-20 à 270		16038			
	1,00 µm	-20 à 260		16053	16056		
	1,40 µm	-20 à 240			16016		
0,32 mm	0,10 µm	-20 à 280		16009			
	0,25 µm	-20 à 280	16021	16024			
•	0,50 µm	-20 à 270		16039			
	1,00 µm	-20 à 260		16054	16057		
	1,50 µm	-20 à 250		16069	16072		16075
	1,80 µm	-20 à 240		16092	16093		
0,53 mm	0,25 µm	-20 à 280		16025			
	0,50 µm	-20 à 270		16040			
	1,00 µm	-20 à 260	16052	16055	16058		
	1,50 µm	-20 à 250		16070			
	3,00 µm	-20 à 240		16085	16088	16076	16091

Colonnes Rtx®-1701

Phase de polarité intermédiaire ; Crossbond® cyanopropylephényle diméthyle polysiloxane - USP : G46

Phases similaires: DB-1701R, DB-1701, CP Sil 19 CB, VF-1701ms, VF-1701 Pesticides, ZB-1701, ZB-1701P.

Applications: Alcools, composés oxygénés, PCB et pesticides.

Ø int.	Film	θ limite °C	10 m	15 m	20 m	30 m	40 m	60 m	105 m
0,10 mm	0,10 µm	-20 à 280	42201		42202				
0,18 mm	0,20 µm	-20 à 280	42001		42002		42003		
	0,40 µm	-20 à 280			42011				
0,25 mm	0,10 µm	-20 à 280				12008		12011	
	0,25 µm	-20 à 280		12020		12023		12026	
	0,50 µm	-20 à 270/280		12035		12038		12041	
	1,00 µm	-20 à 260/280		12050		12053		12056	12059
0,32 mm	0,10 µm	-20 à 280				12009			
	0,25 µm	-20 à 280		12021		12024		12027	
	0,50 µm	-20 à 270/280		12036		12039		12042	
	1,00 µm	-20 à 260/280		12051		12054		12057	
	1,50 µm	-20 à 240/260		12066		12069		12072	
0,53 mm	0,10 µm	-20 à 270/280				12010			
	0,25 µm	-20 à 270/280				12025			
	0,50 µm	-20 à 260/270		12037		12040			
	1,00 µm	-20 à 250/270		12052		12055		12058	
	1,50 µm	-20 à 240/260				12070		12073	
	3.00 µm	-20 à 230/250		12082		12085		12088	

Phase polaire, Crossbond® cyanopropyleméthyle phényleméthyle polysiloxane - USP: G7, G19

Phases similaires: DB-225ms, CP-Sil 43 CB.

Applications: FAME, glucides, stérols, composés aromatiques.

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,25 µm	40 à 220/240	14020	14023	14026
	0,50 µm	40 à 220/240		14038	
0,32 mm	0,25 µm	40 à 220/240	14021	14024	
	0,50 µm	40 à 220/240		14039	
	1,00 µm	40 à 200/220	14051	14054	14057
0,53 mm	0,25 µm	40 à 200/220	14022		
	0,50 µm	40 à 200/220		14040	
	1,00 µm	40 à 200/220	14052	14055	

Colonnes Rtx®-Wax

Phase polaire, Crossbond® polyéthylèneglycol - USP: G14, G15, G16, G20, G39

Phases similaires: DB-Wax, CP Wax 52 CB, ZB-Wax.

Applications: Alcools, glycols et aldéhydes.

Ø int.	Film	θ limite °C	10 m	15 m	20 m	30 m	60 m
0,10 mm	0,10 µm	20 à 250	41601		41602		
	0,20 µm	20 à 250	41603		41604		
0,25 mm	0,10 µm	20 à 250				12408	
0,32 mm	0,25 µm	20 à 250		12420		12423	12426
	0,50 µm	20 à 250		12435		12438	12441
	0,25 µm	20 à 250				12424	12427
	0,50 µm	20 à 250		12436		12439	12442
0,53 mm	1,00 µm	20 à 240/250		12451		12454	12457
	0,25 µm	20 à 250				12425	
	0,50 µm	20 à 250				12440	
	1,00 µm	20 à 240/250		12452		12455	12458

Colonnes Stabilwax®

Phase polaire, Crossbond® polyéthylèneglycol - USP: G14, G15, G16, G20, G39

Phases similaires: HP-INNO Wax, CP Wax 52 CB, VF-WAX MS, ZB-WAXplus.

Applications: FAME, arômes, parfums, solvants, composés aromatiques, l'acroléine/acrylonitrile et composés oxygénés.

Ø int.	Film	θ limite °C	2 m	10 m	15 m	20 m	30 m	60 m
0,10 mm	0,10 µm	40 à 250/260		42601				
0,15 mm	0,15 µm	40 à 250/260	15112	43830		43831		
0,18 mm	0,18 µm	40 à 250	15118			40602		
0,25 mm	0,10 µm	40 à 250/260			10605		10608	10611
	0,25 µm	40 à 250/260	15125		10620		10623	10626
	0,50 µm	40 à 250/260			10635		10638	10641
0,32 mm	0,10 µm	40 à 250/260					10609	
	0,25 µm	40 à 250/260			10621		10624	11027
	0,50 µm	40 à 250/260			10636		10639	10642
	1,00 µm	40 à 240/250			10651		10654	10657
0,53 mm	0,10 µm	40 à 250/260					10610	
	0,25 µm	40 à 250/260			10622		10625	10628
	0,50 µm	40 à 250/260			10637		10640	10643
	1,00 µm	40 à 240/250			10652		10655	10658
	1,50 µm	40 à 230/240			10666		10669	10672
	2,00 µm	40 à 220/230			10667		10670	

Colonnes Stabilwax®-MS

Phase polaire, Crossbond® polyéthylèneglycol spécifique - USP: G14,G15, G16, G20 et G39

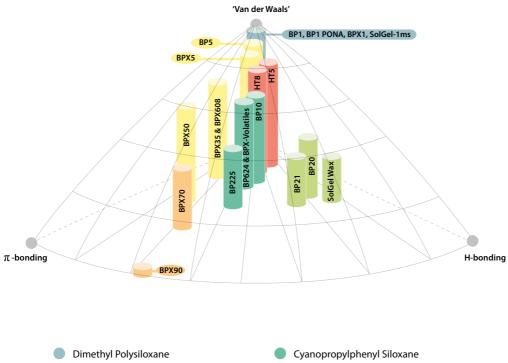
Phases similaires: VF-WAX MS, ZB-WAXplus.

Applications: Arômes, parfums, allergènes, solvants.

Ø int.	Film	θ limite °C	30 m
0,25 mm	0,25 µm	40 à 250/260	10673
0,32 mm	0,25 µm	40 à 250/260	10674

Produits Liés

Gamme complète de Bouchons 9 mm avec septums collés électrochimiquement ou Bonded : le septum ne tombe plus dans le flacon. Voir chapitre :



Repartition des différentes phases SGE en fonction de leurs polarités

3D Phase Polarity Scale

Phenyl Polysilphenylene Siloxane

Polycarborane Siloxane

Cyanopropyl Polysilphenylene Siloxane

Polyethylene Glycol

Indices de Rétention des phases greffées

L'utilisation des indices de rétention est un outil précieux pour choisir la phase stationnaire à même de fournir la résolution optimale des composés à analyser.

PHASE	BENZENE (X)	BUTANOL (Y)	2-PENTANONE (Z)	NITROPROPANE (U)	PYRIDINE (S)	MOYENNE
BP1	647	646	666	707	722	678
BP5	667	665	692	743	746	703
BPX5	664	667	697	752	750	706
HT8	680	673	728	796	780	731
BPX35	728	726	763	862	848	785
BP10	709	774	772	862	832	790
BP225	824	931	918	1070	1014	951
BP20 (Wax)	947	1153	998	1217	1185	1100
BPX70	1067	1219	1170	1365	1300	1224

La valeur moyenne des indices de rétention fournit une indication de la polarité de la phase et peut aider à choisir la phase stationnaire appropriée au domaine d'applications. Les réponses individuelles de chaque composé de référence peuvent plus précisément déterminer la meilleure phase pour n'importe quel produit spécifique ou groupe de composés.

Colonnes BP1

100 % Diméthyl Polysiloxane - USP : G1, G2, G38

Phases similaires: DB-1, DB-Petro, HP-1, HP-1MS, Rtx-1, Ultra-1, SPB-1, SPB-1 Sulfur, Petrocol DH, CP-Sil 5CB, VB-1, ZB-1, VF-1ms.

Applications: hydrocarbures, aromatiques, pesticides, phénols,

herbicides, amines.

Phase apolaire standard pour analyses de routine.

Ø int.	Film	θ limite °C	10 m	12 m	15 m	25 m	30 m	50 m	60 m
0,10 mm	0,10 µm	-60 à 320/340	054022						
0,22 mm	0,10 µm	-60 à 320/340		054040		054041			
	0,25 µm	-60 à 320/340		054046		054047	054050	054048	
	1,00 µm	-60 à 320/340				054053		054054	
0,25 mm	0,10 µm	-60 à 320/340			054039				
	0,25 µm	-60 à 320/340			054043		054044		054045
	0,50 µm	-60 à 320/340					054820		054812
	1,00 µm	-60 à 320/340					054056		054815
0,32 mm	0,25 µm	-60 à 320/340			054061	054059	054062		
	0,50 µm	-60 à 320/340		054064		054065	054068	054066	054069
	1,00 µm	-60 à 320/340		054070		054071	054813	054072	054810
	3,00 µm	-60 à 320/340					054073		
	5,00 µm	-60 à 320/340						054082	054085
0,53 mm	0,50 µm	-60 à 320/340					054092		
	1,00 µm	-60 à 320/340		054086		054087	054090		
	1,50 µm	-60 à 300/320			054199				
	3,00 µm	-60 à 300/320					054808		054809
	5,00 µm	-60 à 280/300				054095		054096	054807

Colonnes BPX1

100 % polydiméthylsiloxane

Phases similaires: DB-2887, DB-HT Sim Dis, HP-1, Petrocol 2887,

Petrocol EX2887, Rtx-2887.

Applications: ASTM méthodes D2887 et D6532.

Colonnes apolaires pour analyses pétrochimique (distillation simulée).

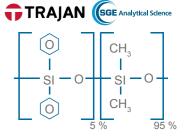
Ø int.	Film	θ limite °C	10 m
0,10 mm	0,10 µm	-30 à 400	054777
0,53 mm	0,10 µm	-30 à 400	054803

Colonnes SolGel 1ms

Phases similaires: DB-1, DB-Petro, HP-1, HP-1MS, Rtx-1, Ultra-1, SPB-1, SPB-1 Sulfur, Petrocol DH, CP-Sil 5CB, VB-1, ZB-1, VF-1ms. Applications: Composés très actifs.

Phase apolaire pour analyses en spectrocopie de masse, très robuste thermiquement.

Ø int.	Film	θ limite °C	30 m	60 m
0,25 mm	0,25 µm	0 à 340/360	054795	054793
0,32 mm	0,25 µm	0 à 340/360	054798	


Colonnes BP5

5 % Phényl 95 % DiméthylPolysiloxane

Phases similaires: DB-5, Rtx-5, HP-5, Ultra-2, PTE-5, SPB-5, MDN-5, CP-Sil

8CB, VB-5, ZB-5.

Applications: Aromatiques, pesticides, herbicides, drogues, hydrocarbures, applications GC/MS.

Phase polyvalente qui présente d'excellentes caractéristiques thermiques. Colonnes couramment utilisées pour une grande variété d'applications.

Ø int.	Film	θ limite °C	12 m	15 m	25 m	30 m	60 m
0,22 mm	0,25 µm	-60 à 320/340	054167		054168		
0,25 mm	0,25 µm	-60 à 320/340		054182		054183	054184
	1,00 µm	-60 à 320/340	•••			054203	
0,32 mm	0,25 µm	-60 à 320/340			054180		054178
	0,50 µm	-60 à 320/340			054186	054216	
	1,00 µm	-60 à 320/340				054189	054188
0,53 mm	1,00 µm	-60 à 320/340			054198	054195	
	5,00 µm	-60 à 280/300				054196	

Colonnes BPX-5

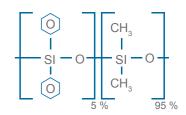
5% Phényl Polysilphénylène siloxane - USP: G27, G36, G41

Phases similaires: DB-5, DB-5ms, DB-5.625, XTI-5, Rtx-5ms, Ultra-2, HP-5, HP-5MS, HP5-TA, SPB-5, MDN-5S, CP-Sil8CB, Rxt-Sil 5MS, AT-5ms, VB-5, ZB-5, VF-5ms.

Applications: Analyses "Ultra traces", pesticides/herbicides, hydrocarbures, solvants, phénols, amines, GC/MS et autres applications avec détection spécifique.

Colonne faiblement polaire utilisable jusqu'à 370°C. Très robuste et polyvalente, cette phase BPX-5 répond à 80% des analyses de routine du laboratoire.

Film	θ limite °C	6 m	10 m	12 m	15 m	25 m	30 m	40 m	50 m	60 m
0,10 µm	-40 à 360/370		054099							
0,15 µm	-40 à 360/370						054110			
0,25 µm	-40 à 360/370					054104				
0,18 µm	-40 à 360/370							054229		
0,25 µm	-40 à 360/370			054112		054113	054142		054114	
0,10 µm	-40 à 360/370				0542170		0541011			
0,25 µm	-40 à 360/370				054100		054101			054102
0,50 µm	-40 à 360/370						0541025			
1,00 µm	-40 à 360/370				054121		054122			054123
0,25 µm	-40 à 360/370			054118	054144	054119	054145			054146
0,50 µm	-40 à 360/370					054125	0541205		054126	
1,00 µm	-40 à 360/370	0541261		054127			054153		054129	054154
0,25 µm	-40 à 360/370			054133		054134				
0,50 µm	-40 à 360/370						0541345			
1,00 µm	-40 à 360/370			054130		054131	054148			
1,50 µm	-40 à 350/360						0541348			
3,00 µm	-40 à 350/360						054160			
	0,10 µm 0,15 µm 0,25 µm 0,10 µm 0,25 µm 0,10 µm 0,25 µm 1,00 µm 0,25 µm 1,00 µm 0,50 µm 1,00 µm 0,25 µm 1,00 µm 1,00 µm 0,25 µm 1,00 µm 1,00 µm 1,00 µm 1,00 µm 1,00 µm	0,10 µm -40 à 360/370 0,15 µm -40 à 360/370 0,25 µm -40 à 360/370 0,25 µm -40 à 360/370 0,25 µm -40 à 360/370 0,10 µm -40 à 360/370 0,50 µm -40 à 360/370 1,00 µm -40 à 360/370 0,50 µm -40 à 360/370 0,50 µm -40 à 360/370 1,00 µm -40 à 360/370 1,50 µm -40 à 360/370 1,50 µm -40 à 360/370 1,50 µm -40 à 350/360 3,00 µm -40 à 350/360	0,10 µm -40 à 360/370 0,15 µm -40 à 360/370 0,25 µm -40 à 360/370 0,25 µm -40 à 360/370 0,25 µm -40 à 360/370 0,10 µm -40 à 360/370 0,50 µm -40 à 360/370 1,00 µm -40 à 360/370 0,50 µm -40 à 360/370 1,00 µm -40 à 360/370 0,50 µm -40 à 360/370 0,50 µm -40 à 360/370 0,50 µm -40 à 360/370 1,00 µm -40 à 360/370 1,00 µm -40 à 360/370 0,50 µm -40 à 360/370 1,50 µm -40 à 360/370 1,50 µm -40 à 360/370	0,10 µm -40 à 360/370 054099 0,15 µm -40 à 360/370 0,25 µm -40 à 360/370 0,18 µm -40 à 360/370 0,25 µm -40 à 360/370 0,10 µm -40 à 360/370 0,50 µm -40 à 360/370 1,00 µm -40 à 360/370 0,50 µm -40 à 360/370 1,00 µm -40 à 360/370 1,50 µm -40 à 360/370 1,50 µm -40 à 350/360	0,10 μm -40 à 360/370 054099 0,15 μm -40 à 360/370 0,25 μm -40 à 360/370 0,18 μm -40 à 360/370 054112 0,10 μm -40 à 360/370 0,25 μm -40 à 360/370 0,50 μm -40 à 360/370 1,00 μm -40 à 360/370 054118 0,50 μm -40 à 360/370 054127 0,25 μm -40 à 360/370 054133 0,50 μm -40 à 360/370 054133 0,50 μm -40 à 360/370 054130 1,00 μm -40 à 360/370 054130 1,50 μm -40 à 350/360 054130	0,10 μm -40 à 360/370 054099 0,15 μm -40 à 360/370 0,25 μm -40 à 360/370 0,18 μm -40 à 360/370 054112 0,25 μm -40 à 360/370 0542170 0,25 μm -40 à 360/370 054100 0,50 μm -40 à 360/370 054110 0,50 μm -40 à 360/370 054121 0,25 μm -40 à 360/370 054118 054144 0,50 μm -40 à 360/370 054127 1,00 μm -40 à 360/370 0541261 054133 0,50 μm -40 à 360/370 054130 1,00 μm -40 à 360/370 054130 1,50 μm -40 à 360/370 </td <td>0,10 μm -40 à 360/370 054099 0,15 μm -40 à 360/370 054104 0,25 μm -40 à 360/370 054104 0,18 μm -40 à 360/370 054112 054113 0,10 μm -40 à 360/370 0542170 0542170 0,25 μm -40 à 360/370 054100 054100 0,50 μm -40 à 360/370 054100 054100 054100 054100 054100 054100 054121 054121 054121 054125 054125 05412</td> <td>0,10 μm -40 à 360/370 054099 054110 0,15 μm -40 à 360/370 054110 0,25 μm -40 à 360/370 054104 0,18 μm -40 à 360/370 054112 054113 054142 0,10 μm -40 à 360/370 054112 054101 0,25 μm -40 à 360/370 054102 054101 0,50 μm -40 à 360/370 054100 054101 0,50 μm -40 à 360/370 054100 0541025 1,00 μm -40 à 360/370 054121 0541025 0,25 μm -40 à 360/370 054118 054144 054119 054145 0,50 μm -40 à 360/370 054127 </td> <td>0,10 μm -40 à 360/370 054099 054110 0,15 μm -40 à 360/370 054104 0,18 μm -40 à 360/370 054104 054229 0,25 μm -40 à 360/370 054112 054113 054142 0,10 μm -40 à 360/370 0542170 0541011 0,25 μm -40 à 360/370 054100 054101 0,50 μm -40 à 360/370 054121 0541025 1,00 μm -40 à 360/370 054121 054122 0,50 μm -40 à 360/370 054121 054125 1,00 μm -40 à 360/370 054127 054125 0,50 μm -40 à 360/370 </td> <td>0,10 μm -40 à 360/370 054099 054110 0,15 μm -40 à 360/370 054104 0,25 μm -40 à 360/370 0 054104 0,25 μm -40 à 360/370 054112 054113 054142 054114 0,10 μm -40 à 360/370 0542170 0541011 0,25 μm -40 à 360/370 054100 054101 0,50 μm -40 à 360/370 054100 054101 0,50 μm -40 à 360/370 054121 054122 0,50 μm -40 à 360/370 054125 054125 054126 1,00 μm -40</td>	0,10 μm -40 à 360/370 054099 0,15 μm -40 à 360/370 054104 0,25 μm -40 à 360/370 054104 0,18 μm -40 à 360/370 054112 054113 0,10 μm -40 à 360/370 0542170 0542170 0,25 μm -40 à 360/370 054100 054100 0,50 μm -40 à 360/370 054100 054100 054100 054100 054100 054100 054121 054121 054121 054125 054125 05412	0,10 μm -40 à 360/370 054099 054110 0,15 μm -40 à 360/370 054110 0,25 μm -40 à 360/370 054104 0,18 μm -40 à 360/370 054112 054113 054142 0,10 μm -40 à 360/370 054112 054101 0,25 μm -40 à 360/370 054102 054101 0,50 μm -40 à 360/370 054100 054101 0,50 μm -40 à 360/370 054100 0541025 1,00 μm -40 à 360/370 054121 0541025 0,25 μm -40 à 360/370 054118 054144 054119 054145 0,50 μm -40 à 360/370 054127	0,10 μm -40 à 360/370 054099 054110 0,15 μm -40 à 360/370 054104 0,18 μm -40 à 360/370 054104 054229 0,25 μm -40 à 360/370 054112 054113 054142 0,10 μm -40 à 360/370 0542170 0541011 0,25 μm -40 à 360/370 054100 054101 0,50 μm -40 à 360/370 054121 0541025 1,00 μm -40 à 360/370 054121 054122 0,50 μm -40 à 360/370 054121 054125 1,00 μm -40 à 360/370 054127 054125 0,50 μm -40 à 360/370	0,10 μm -40 à 360/370 054099 054110 0,15 μm -40 à 360/370 054104 0,25 μm -40 à 360/370 0 054104 0,25 μm -40 à 360/370 054112 054113 054142 054114 0,10 μm -40 à 360/370 0542170 0541011 0,25 μm -40 à 360/370 054100 054101 0,50 μm -40 à 360/370 054100 054101 0,50 μm -40 à 360/370 054121 054122 0,50 μm -40 à 360/370 054125 054125 054126 1,00 μm -40



Colonnes BP5MS

5 % Phényl Polysilphénylène siloxane

Phases similaires: DB-5ms, ZB-5ms, Rxi-5Sil MS, VF-5ms, CP-Sil 8 CB.

Applications: Analyses "Ultra traces", pesticides/herbicides, hydrocarbures, solvants, phénols, amines, GC/MS et autres applications avec détection spécifique.

Phase avec silphénylène optimisée pour les applications générales en analyses par MS. Polarité comparable aux colonnes BPX-5. Faible "bleeding", excellente inertie.

Ø int.	Film	θ limite °C	15 m	20 m	30 m	60 m
0,18 mm	0,18 µm	-40 à 330/350		054301		
0,25 mm	0,10 µm	-40 à 330/350				054312
	0,25 µm	-40 à 330/350	054308		054310	
0.32 mm	0.25 um	-40 à 330/350			054320	054321

Colonnes HT5

5 % Phényl (equiv.) Polycarborane-siloxane

Phases similaires: MXT-1 Sim Dist, HT-Sim, DistCB, MXT-500.

Applications: Distillation simulée, hydrocarbures, pesticides/herbicides, GC/MS applications.

Phase unique pour les applications à haute température, idéale pour la distillation simulée et autres applications de l'industrie pétrolière. Colonne la plus résistante avec une température maximale de 480°C.

Ces colonnes HT5 sont également disponibles avec un tube en aluminium, la résistance à la température est alors de 460/480°C. (Nous contactez pour connaître les références)

Ø int.	Film	θ limite °C	6 m	12 m	15 m	25 m	30 m
0,22 mm	0,10 µm	10 à 380/400		054631		054632	
0,25 mm	0,10 µm	10 à 380/400			054633		054634
0,32 mm	0,10 µm	10 à 380/400		054641		054642	
	0,50 µm	10 à 380/400			054667		054668
0,53 mm	0,10 µm	10 à 380/400	054655				
	0,15 µm	10 à 380/400		054657		054658	

Ces colonnes HT5 sont aussi disponibles avec un tube en aluminium, la résistance à la température est alors de 460/480°C. (Nous contactez pour connaitre les références).

Colonnes HT8 et HT8 PCB

8 % Phényl (equiv.) Polycarborane-siloxane

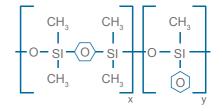
Phases similaires: Pas d'équivalent sur le marché.

Phase haute température à polarité moyenne sans pareille.

Applications : Analyses PCB, aromatiques nitro-substitutés, PAH,

pesticides/herbicides.

La colonne préférée pour les composés polychlorobiphényl (PCB) avec une utilisation à haute température (séparation des PCB en substitution ortho et par point d'ébullition).


Туре	Ø int.	Film	θ limite °C	10 m	25 m	30 m	50 m	60 m
	0,10 mm	0,10 µm	-20 à 360/370	054690				
НТ8	0,22 mm	0,25 µm	-20 à 360/370		054675		054676	
піо	0,25 mm	0,25 µm	-20 à 360/370			054677		054683
	0,32 mm	0,25 µm	-20 à 360/370		054680			054682
HT8-PCB	0,25 mm							054236

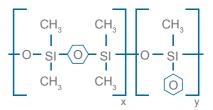
Colonnes BPX35

35 % Phényl Polysilphénylène siloxane - USP : G28, G32, G42

Phases similaires: DB-35, DB-35ms, Rtx-35, HP-35, HP-35MS, SPB-35, MDN-35. Applications: Analyses environnementales, pesticides/herbicides, drogues, pharmaceutiques, PAH, applications GC/MS.

Colonne moyennement polaire à faible "bleeding" utilisable jusqu'à 360°C. Spécialement adaptée aux analyses de traces d'herbicides et de composés aromatiques.

Ø int.	Film	θ limite °C	10 m	25 m	30 m	60 m
0,10 mm	0,10 µm	10 à 330/360	054699			
0,22 mm	0,25 µm	10 à 330/360		054711		
0,25 mm	0,25 µm	10 à 330/360		•••	054701	054702
0,32 mm	0,25 µm	10 à 330/360		•••	054724	
	0,50 µm	10 à 330/360			0547158	
0,53 mm	1,00 µm	10 à 330/360			054737	


Colonnes BPX608

35 % Phényl Polysilphénylène siloxane

Phases similaires: DB-35, DB-35ms, Rtx-35, HP-35, HP-35MS, SPB-35, MDN-35. Applications: Analyses environnementales, pesticides/herbicides, drogues, pharmaceutiques, PAH, applications GC/MS.

Colonne moyennement polaire utilisable jusqu'à 370°C. Optimisée pour détection ECD. Colonne idéale pour l'analyse des herbicides organochlorés et des pesticides.

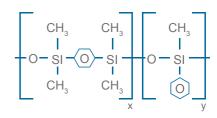
Ø int.	Film	θ limite °C	25 m
0.32 mm	0.40 um	10 à 360/370	054823

Colonnes BPX50

50 % Phényl Polysilphénylène siloxane - USP: G3, G17

Phases similaires: OV-17, SP-2250, DB-17, DB-17ms, DB-17ht, Rtx-50,

SPB-50, HP-50+, HP-17.


Applications: EPA 604, 608, 8060, 8081, triazines/herbicides, "drug

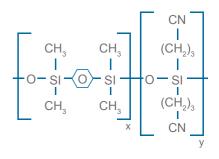
screening", stéroïdes et composés pharmaceutiques.

Colonne movennement polaire à faible "bleeding" utilisable jusqu'à 350°C.

Spécialement adaptée à plusieurs méthodes EPA et aux applications pharmaceutiques.

Ø int.	Film	θ limite °C	10 m	15 m	20 m	30 m	60 m
0,10 mm	0,10 µm	10 à 330/350	054740				
0,15 mm	0,15 µm	10 à 330/350				054741	
0,18 mm	0,18 µm	10 à 330/350			054742		
0,25 mm	0,25 µm	10 à 330/350		054750		054751	054752
0,32 mm	0,25 µm	10 à 330/350				054761	
0,53 mm	1,00 µm	10 à 330/350				054772	

Colonnes BPX70


70 % Cyanopropyl Polysilphénylène siloxane - USP: G5

Phases similaires: DB-23, Rtx-2330, SP-2330, CP-Sil 88, SP2380, HP-23. Applications: Esters méthyliques d'acides gras (FAME), carbohydrates,

pharmaceutiques, applications GC/MS.

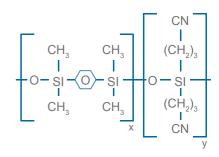
Colonne à faible "bleeding" utilisable jusqu'à 260°C.

La polarité à été spécialement définie pour une analyse optimale des esters méthyliques d'acides gras (FAME).

Ø int.	Film	θ limite °C	10 m	120 m	25 m	30 m	50 m	60 m
0,10 mm	0,20 µm	50 à 250/260	054600					
0,22 mm	0,25 µm	50 à 250/260			054602	054612	054603	054613
0,25 mm	0,25 µm	50 à 250/260		054624		054622		054623
0,32 mm	0,25 µm	50 à 250/260			054606	054616	054607	054617
0,53 mm	0,50 µm	50 à 250/260				054620		

Colonnes BPX90

90 % Cyanopropyl Polysilphénylène siloxane


Phases similaires: Polarité SGE unique, sans équivalence.

Applications: Séparation rapide de parfums, aromatiques, petrochimiques, pesticides, PCB et isomères d'esters d'acides gras (FAME).

Phase extrêmement polaire utilisable jusqu'à 280°C.

Elle permet la résolution rapide de composés qui ne sont pas séparés sur les colonnes conventionnelles.

Ø int.	Film	θ limite °C	10 m	15 m	30 m	60 m
0,25 mm	0,25 µm	80 à 260/280	054596	054570	054580	054590
0,32 mm	0,50 µm	80 à 260/280			054583	

Colonnes capillaires - SGE Analytical Science

-CH₂- CH₂- O

Colonnes BP20

WAX - Polyéthylène Glycol - USP: G14, G15, G16, G20, G39

Phases similaires: DB-Wax, HP-20M, Supelcowax 10, CB-Wax, Stabilwax, Carbowax, HP-Innowax, Rtx-WAX, PE-WAX, RH-WAX,

ZB-WAX, TRWAX.

Applications: Alcools, acides libres, esters d'acides gras (FAME),

aromatiques, solvants, huiles essentielles.

Phase très polaire pour analyses d'alcools, cétones, et aldéhydes.

Elle permet également la séparation d'isomères aromatiques (isomères du xylène par exemple).

Ø int.	Film	θ limite °C	10 m	15 m	25 m	30 m	50 m	60 m
		•		13111	23 111	30 111	30 111	00 111
0,10 mm	0,10 µm	20 à 260/280	054405					
0,22 mm	0,25 µm	20 à 260/280			054421	054424	054422	054425
0,25 mm	0,25 µm	20 à 260/280				054427		
	0,50 µm	20 à 260/280				054415		054458
	1,00 µm	30 à 240/260				054439		
0,32 mm	0,25 µm	20 à 260/280				054433		054434
	0,50 µm	20 à 260/280			054436	054438	054437	054457
	1,00 µm	30 à 240/260			054442	054444	054443	054445
0,53 mm	0,50 µm	20 à 260/280				054440		
	1,00 µm	30 à 240/260		054450	054448	054451		0544515
	2,00 µm	30 à 240/260			054456			

Colonnes SolGel Wax

Polyéthylène Glycol dans une matice SolGel

Phases similaires: DB-Wax, Rtx-Wax, Stabilwax, HP20M, HP-Wax, HP-INNOWax, Supelcowax-10, AT-Wax, Nukol, CP Wax 52CB, VB-WAX, ZB-WAX.

Applications: Composés très actifs.

Phase polaire type Carbowax très robuste et résistante à la température. Moins sensible à l'oxygène que les phases polaires classiques.

Ø int.	Film	θ limite °C	30 m	60 m
0,25 mm	0,25 µm	30 à 360/280	054796	054791
	1,00 µm	30 à 360/280	054787	
0,32 mm	0,25 µm	30 à 360/280	054788	054789
	0,50 µm	30 à 360/280	054797	054792
0,53 mm	0,50 µm	30 à 360/280	054786	
	1,00 µm	30 à 360/280	054785	

Colonnes SolGel BP21

FFAP - Polyéthylène Glycol modifié à l'acide Nitrotéréphthalique - USP : G25, G35

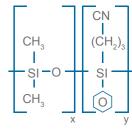
-CH₂- CH₂- O

Phases similaires: DB-FFAP, HP-FFAP, Stabilwax-DA, CPWax-58CB. Applications: Acides libres volatils, esters d'acides gras (FAME), alcools, aldéhydes, acrylates, cétones.

Phase très polaire Polyéthylène Glycol modifiée à l'acide nitrotéréphthalique. Recommandée pour l'analyse d'acides gras libres.

Ø int.	Film	θ limite °C	25 m	30 m	50 m	60 m
0,22 mm	0,25 µm	35 à 240/250	054462			
0,25 mm	0,25 µm	35 à 240/250		054465		054466
0,32 mm	0,25 µm	35 à 240/250	054468	054471	054469	054472
	0,50 µm	35 à 240/250			054480	
0,53 mm	0,50 µm	35 à 240/250	054474	054477		
	1,00 µm	35 à 240/250		054478		

Colonnes SolGel BP10


1701 - 14 % Cyanopropylphényl Polysiloxane

Phases similaires: DB-1701, Rtx-1701, SPB-7, HP-1701, CP-Sil 19CB,

007-1701, PE-1701, SP-1701.

Applications: Analyses environnementales (méthodes EPA 608 et 8081),

pesticides/herbicides, drogues, pharmaceutiques.

La polarité de cette colonne a été spécialement définie pour une analyse optimale des pesticides organochlorés (EPA 608 & 8081).

Ø int.	Film	θ limite °C	25 m	30 m
0,22 mm	0,25 µm	-20 à 280/300	054253	
0,25 mm	0,25 µm	-20 à 280/300	•••	054256
0,32 mm	0,25 µm	-20 à 280/300		054259
	0,50 µm	-20 à 280/300	054268	
	1,00 µm	-20 à 280/300	•••	054270
0,53 mm	1,00 µm	-20 à 260/280	054280	054283

Colonnes BPX Volatils

CyanoPropylPhényl Polysiloxane

Phases similaires: DB-VRX, HP-624, OPTIMA 624, ELITE-624, 007-624, RTX-VOLATILES, SPB-624, TRV1, CPSIL 13 CB, VOCOL, VR 624, CR 624

VB-624, CP-624.

Applications: analyses environnementales, organiques volatils, alcools, USP G43.

Phase utilisable jusqu'à 300°C, spécialement destinée à l'analyse des composés organiques volatils (EPA 624, SW-846 8240/8260), des alcools et à la méthode USP G43.

Ø int.	Film	θ limite °C	30 m	60 m
0,25 mm	1,40 µm	0 à 290/300	054980	054981
0,32 mm	1,80 µm	0 à 290/300	054982	054983
0,53 mm	3,00 µm	0 à 290/300	054984	054985

Colonnes BP624

CyanoPropylPhényl Polysiloxane - USP: G43

Phases similaires: DB-624, OV-624, AT-624, HP-VOC, CP-Select624CB, 007-624, Rtx-Volatiles, VOCOL, ZB-624. Applications: Méthode EPA 624, eau potable, volatils, hydrocarbures chlorés, solvants.

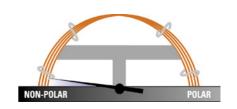
Phase polaire couramment utilisée pour l'analyse des composés organiques volatils (EPA 624, SW-846 8240/8260), des alcools et pour la méthode USP G43.

Ø int.	Film	θ limite °C	30 m	50 m	60 m
0,22 mm	1,20 µm	0 à 230/240	054827		
0,25 mm	1,40 µm	0 à 230/240	054840	•••	054842
0,32 mm	1,80 µm	0 à 230/240	054832	•••	054841
0,53 mm	3,0 µm	0 à 230/240	054836	054835	054838

Туре	Ø int.	Film θ limite °	C 30 m	60 m
BPX-BIOD 20	0,32 mm	0,25 µm	0544331	
BPX-BIOD WAX	0,32 mm	0,25 µm	0544332	
BPX-DXN	0,25 mm			054235
BPX-DIOXIN-II	0,15 mm		054231	

Produits Liés particulière, une large gamme disponible pour différents appareillages Consommables - Accessoires GC - Inserts d'injection

Colonnes TG-1MS


100 % Méthylpolysiloxane - USP: G1, G2

Phases similaires: Rxi-1ms, DB-1, DB-1ms, HP-1, HP-1ms, Ultra-1,

SPB-1, Equity-1, VF-1ms, CP-Sil 5 CB Low Bleed/MS.

Applications: Hydrocarbures, PCB, drogues, composés organiques dans

l'essence, gaz de raffinerie, huiles essentielles, pesticides.

Film	θ limite °C	10 m	12 m	15 m	20 m	30 m	40** ou 50 m	60 m
0,10 µm	330/350	26099-0200						
0,15 µm	330/350	26099-2750					26099-2940**	
0,18 µm	330/350				26099-5780			
0,40 µm	330/350				26099-5680			
0,33 µm	330/350		26099-5820					
0,25 µm	330/350			26099-1300		26099-1420 26099-1425*		26099-1540
0,50 µm	330/350			26099-2110		26099-2230		26099-2350
1,00 µm	330/350			26099-2840		26099-2960		26099-3080
0,10 µm	330/350			26099-0360				
0,25 µm	330/350			26099-1310		26099-1430		26099-1550
0,50 µm	330/350					26099-2240		26099-2360
1,00 µm	330/350			26099-2850		26099-2970		26099-3090
3,00 µm	330/350			26099-3500		26099-4840		
0,50 µm	330/350			26099-2130		26099-2250		
1,00 µm	330/350			26099-2860		26099-2985*		
1,50 µm	330/350			26099-3340		26099-3360		26099-3370
3.00 um	330/350					26099-3960		
	0,10 µm 0,15 µm 0,18 µm 0,40 µm 0,33 µm 0,25 µm 0,50 µm 1,00 µm 0,25 µm 0,50 µm 1,00 µm 0,50 µm 1,00 µm 1,00 µm 1,00 µm	0,10 μm 330/350 0,15 μm 330/350 0,18 μm 330/350 0,40 μm 330/350 0,25 μm 330/350 0,50 μm 330/350 1,00 μm 330/350 0,25 μm 330/350 0,10 μm 330/350 0,50 μm 330/350 1,00 μm 330/350 1,50 μm 330/350	0,10 μm 330/350 26099-0200 0,15 μm 330/350 26099-2750 0,18 μm 330/350 0,40 μm 330/350 0,33 μm 330/350 0,50 μm 330/350 0,50 μm 330/350 1,00 μm 330/350 0,50 μm 330/350 0,50 μm 330/350 1,00 μm 330/350 3,00 μm 330/350 0,50 μm 330/350 0,50 μm 330/350 1,00 μm 330/350 1,50 μm 330/350	0,10 μm 330/350 26099-0200 0,15 μm 330/350 26099-2750 0,18 μm 330/350 0,40 μm 330/350 26099-5820 0,25 μm 330/350 26099-5820 0,50 μm 330/350 1,00 μm 330/350 0,10 μm 330/350 0,50 μm 330/350 1,00 μm 330/350 3,00 μm 330/350 0,50 μm 330/350 0,50 μm 330/350 0,50 μm 330/350 1,00 μm 330/350 1,50 μm 330/350	0,10 μm 330/350 26099-0200 0,15 μm 330/350 26099-2750 0,18 μm 330/350 0,40 μm 330/350 26099-5820 0,25 μm 330/350 26099-1300 0,50 μm 330/350 26099-2110 1,00 μm 330/350 26099-2840 0,10 μm 330/350 26099-2840 0,25 μm 330/350 26099-1310 0,50 μm 330/350 26099-1310 0,50 μm 330/350 26099-2850 3,00 μm 330/350 26099-2850 3,00 μm 330/350 26099-2130 1,00 μm 330/350 26099-2860 1,50 μm 330/350 26099-2860	0,10 μm 330/350 26099-0200 0,15 μm 330/350 26099-2750 26099-5780 0,40 μm 330/350 26099-5820 0,25 μm 330/350 26099-5820 0,50 μm 330/350 26099-2110 1,00 μm 330/350 26099-2210 0,10 μm 330/350 26099-2840 0,25 μm 330/350 26099-2840 0,50 μm 330/350 26099-2840 0,50 μm 330/350 26099-2850 1,00 μm 330/350 26099-2850 3,00 μm 330/350 26099-2850 3,00 μm 330/350 26099-2860 1,50 μm 330/350 26099-2860 1,50 μ	0,10 μm 330/350 26099-0200 0,15 μm 330/350 26099-2750 26099-5780 26099-5680 26099-5680 26099-1420 26099-1420 26099-1420 26099-1425* 26099-2230 26099-2230 26099-2230 26099-2230 26099-2230 26099-2230 26099-2230 26099-2230 26099-2230 26099-2240 26099-2940 26099-2940 26099-2940 26099-2940 26099-2940 26099-2940 </td <td>0,10 μm 330/350 26099-0200 26099-2940*** 0,18 μm 330/350 26099-5780 0,40 μm 330/350 26099-5680 0,33 μm 330/350 26099-5820 26099-1420 26099-1420 26099-1420 26099-1420 26099-2230 26099-2230 26099-2230 26099-2230 26099-2230 26099-2240 26099-2840 26099-2440 26099-2440 26099-2440 </td>	0,10 μm 330/350 26099-0200 26099-2940*** 0,18 μm 330/350 26099-5780 0,40 μm 330/350 26099-5680 0,33 μm 330/350 26099-5820 26099-1420 26099-1420 26099-1420 26099-1420 26099-2230 26099-2230 26099-2230 26099-2230 26099-2230 26099-2240 26099-2840 26099-2440 26099-2440 26099-2440

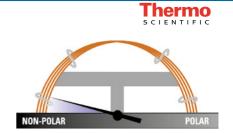
^{*}Avec précolonne de 5 m intégrée / ** 40 m.

Colonnes TG-XLBMS

100 % Méthylpolysiloxane

Phases similaires: Rxi-XLB, DB-XLB, VF-Xms. Applications: Pesticides, PCB, HAP.

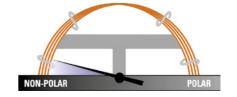
Ø int.	Film	θ limite °C	20 m	30 m	60 m
0,18 mm	0,18 µm	360	26079-5780		
0,25 mm	0,25 µm	360		26079-1420	26079-1540
	0,50 µm	360		26079-2230	
0,32 mm	0,25 µm	360		26079-1430	26079-1550



Colonnes TG-SQC

Applications: Tests de qualifications pour GC MS Thermo Scientific.

Ø int.	Film	θ limite °C	15 m	30 m
0,15 mm	0,15 µm	330/350		
0,25 mm	0,25 µm	330/350	26070-1300	26070-1420



Colonnes TG-5MS

5 % Phényl Méthylpolysiloxane - USP: G27, G36, G38

Phases similaires:

Rxi-5ms, DB-5, HP-5, HP-5ms, Ultra-2, SPB-5, Equity-5, CP-Sil 8. Applications: Semi-volatils, phénols, amines, solvants résiduels, drogues, pesticides, PCB.

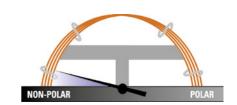
Film	θ limite °C	10 m	12 m	15 m	20 m	30 m	40 m	50 m	60 m
0,10 µm	330/350	26098-0200							
0,15 µm	330/350				26098-2760		26098-2940		
0,18 µm	330/350				26098-5785*				
0,10 µm	330/350					26098-0475*			
0,25 µm	330/350			26098-1300		26098-1420			26098-1540
				26098-1305*		26098-1425*			
0,50 µm	330/350					26098-2230			26098-2350
1,00 µm	330/350					26098-2960			26098-3080
0,33 µm	330/350		26098-5820						
0.25 um	330/350			26098-1310		26098-1430			26098-1550
0,20 μπ	000/000			20000 1010		26098-1435*			
0,50 µm	330/350					26098-2240			26098-2360
1,00 µm	330/350			26098-2850		26098-2970			26098-3090
1,05 µm	330/350							26098-1531	
1,5 µm	330/350								26098-2320
0,25 µm	330/350					26098-1440			
0,50 µm	330/350			26098-2130		26098-2250			
1,00 µm	330/350			26098-2860		26098-2980			
3,00 µm	330/350			26098-3340		26098-3360			
5,00 µm	330/350							26098-4490	26098-4100
	0,10 µm 0,15 µm 0,18 µm 0,10 µm 0,25 µm 0,50 µm 1,00 µm 0,25 µm 0,50 µm 1,00 µm 1,05 µm 1,5 µm 0,55 µm 1,00 µm 1,05 µm 1,5 µm 0,50 µm 1,00 µm	0,10 μm 330/350 0,15 μm 330/350 0,18 μm 330/350 0,10 μm 330/350 0,25 μm 330/350 1,00 μm 330/350 0,33 μm 330/350 0,50 μm 330/350 0,50 μm 330/350 1,00 μm 330/350 1,5 μm 330/350 1,50 μm 330/350 1,00 μm 330/350	0,10 µm 330/350 26098-0200 0,15 µm 330/350 0,18 µm 330/350 0,10 µm 330/350 0,25 µm 330/350 0,50 µm 330/350 1,00 µm 330/350 0,25 µm 330/350 0,50 µm 330/350 1,00 µm 330/350 1,5 µm 330/350 0,50 µm 330/350 0,50 µm 330/350 1,00 µm 330/350 3,00 µm 330/350	0,10 μm 330/350 26098-0200 0,15 μm 330/350 0,18 μm 330/350 0,10 μm 330/350 0,25 μm 330/350 0,50 μm 330/350 1,00 μm 330/350 26098-5820 0,25 μm 330/350 1,00 μm 330/350 1,05 μm 330/350 1,5 μm 330/350 0,50 μm 330/350 0,50 μm 330/350 0,50 μm 330/350 1,00 μm 330/350 3,00 μm 330/350	0,10 μm 330/350 26098-0200 0,15 μm 330/350 0,10 μm 330/350 0,25 μm 330/350 26098-1300 26098-1305* 0,50 μm 330/350 1,00 μm 330/350 26098-5820 0,25 μm 330/350 26098-1310 0,50 μm 330/350 26098-2850 1,00 μm 330/350 26098-2850 1,5 μm 330/350 0,50 μm 330/350 0,50 μm 330/350 0,50 μm 330/350 0,50 μm 330/350 26098-2130 1,00 μm 330/350 26098-2860 26098-2860 3,00 μm 330/350 26098-3340	0,10 μm 330/350 26098-0200 26098-2760 0,15 μm 330/350 26098-5785* 0,10 μm 330/350 26098-1300 0,25 μm 330/350 0,50 μm 330/350 1,00 μm 330/350 26098-1305* 0,25 μm 330/350 26098-5820 0,25 μm 330/350 26098-1310 0,50 μm 330/350 26098-2850 1,00 μm 330/350 1,5 μm 330/350 0,50 μm 330/350 0,50 μm 330/350 0,50 μm 330/350 0,50 μm 330/350	0,10 μm 330/350 26098-0200 26098-2760 0,15 μm 330/350 26098-2760 0,10 μm 330/350 26098-5785* 0,25 μm 330/350 26098-1300 26098-1420 0,50 μm 330/350 26098-1230 1,00 μm 330/350 26098-2230 1,00 μm 330/350 26098-5820 26098-2960 0,25 μm 330/350 26098-5820 0,50 μm 330/350 26098-1310 26098-1430 26098-1435* 26098-2850 26098-2240 1,00 μm 330/350 26098-2850 26098-2970 1,5 μm 330/350 26098-2850 26098-2970 1,5 μm 330/350 26098-2850 26098-2850 <td>0,10 μm 330/350 26098-0200 26098-2760 26098-2940 0,15 μm 330/350 26098-5785* 0,10 μm 330/350 26098-1300 26098-1420 0,25 μm 330/350 26098-1300* 26098-1425* 0,50 μm 330/350 26098-2330 1,00 μm 330/350 26098-2330 0,25 μm 330/350 26098-5820 26098-2960 0,25 μm 330/350 26098-1310 26098-1435* 0,50 μm 330/350 26098-2850 26098-2440 1,5 μm 330/350 26098-2850 26098-2970 1,5 μm 330/350 26098-2850 26098-2850 <t< td=""><td>0,10 μm 330/350 26098-0200 26098-2760 26098-2940 0,15 μm 330/350 26098-5785* 0,10 μm 330/350 26098-1300 26098-1420 0,25 μm 330/350 26098-1305* 26098-1425* 0,50 μm 330/350 26098-2230 1,00 μm 330/350 26098-1305* 26098-2230 0,25 μm 330/350 26098-5820 0,25 μm 330/350 26098-5820 0,50 μm 330/350 26098-1310 26098-1430 1,00 μm 330/350 26098-2850 1,5 μm 330/350 26098-1531 <td< td=""></td<></td></t<></td>	0,10 μm 330/350 26098-0200 26098-2760 26098-2940 0,15 μm 330/350 26098-5785* 0,10 μm 330/350 26098-1300 26098-1420 0,25 μm 330/350 26098-1300* 26098-1425* 0,50 μm 330/350 26098-2330 1,00 μm 330/350 26098-2330 0,25 μm 330/350 26098-5820 26098-2960 0,25 μm 330/350 26098-1310 26098-1435* 0,50 μm 330/350 26098-2850 26098-2440 1,5 μm 330/350 26098-2850 26098-2970 1,5 μm 330/350 26098-2850 26098-2850 <t< td=""><td>0,10 μm 330/350 26098-0200 26098-2760 26098-2940 0,15 μm 330/350 26098-5785* 0,10 μm 330/350 26098-1300 26098-1420 0,25 μm 330/350 26098-1305* 26098-1425* 0,50 μm 330/350 26098-2230 1,00 μm 330/350 26098-1305* 26098-2230 0,25 μm 330/350 26098-5820 0,25 μm 330/350 26098-5820 0,50 μm 330/350 26098-1310 26098-1430 1,00 μm 330/350 26098-2850 1,5 μm 330/350 26098-1531 <td< td=""></td<></td></t<>	0,10 μm 330/350 26098-0200 26098-2760 26098-2940 0,15 μm 330/350 26098-5785* 0,10 μm 330/350 26098-1300 26098-1420 0,25 μm 330/350 26098-1305* 26098-1425* 0,50 μm 330/350 26098-2230 1,00 μm 330/350 26098-1305* 26098-2230 0,25 μm 330/350 26098-5820 0,25 μm 330/350 26098-5820 0,50 μm 330/350 26098-1310 26098-1430 1,00 μm 330/350 26098-2850 1,5 μm 330/350 26098-1531 <td< td=""></td<>

^{*}Avec précolonne de 5 m intégrée.

Produits Liés

Pièces détachées pour injecteurs et détecteurs Thermo Reportez-vous au chapitre :

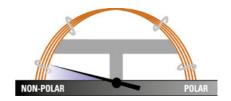
Consommables - Pièces détachées GC - Thermo


Colonnes TG-5MS AMINE

5 % phényl méthylpolysiloxane modifié

Phases similaires: Rtx-5 Amine.

Applications: Amines et composés basiques comme les alkylamines, diamines, triamines, éthanolamines et hétérocycles azotés.


Ø int.	Film	θ limite °C	15 m	30 m
0,25 mm	0,25 µm	300/315	26097-1300	26097-1420
	0,50 µm	300/315		26097-2230
	1,00 µm	300/315	26097-2840	26097-2960
0,32 mm	1,00 µm	300/315		26097-2970
0,53 mm	1,00 µm	300/315		26097-2980
	3,00 µm	300/315		26097-3960

Colonnes TG-5SilMS

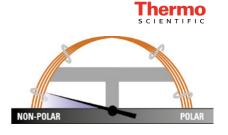
Phases similaires: DB-5MS, VF-5ms, CP-Sil 8 Low-Bleed/MS, Rxi-5SilMS, BPX5, ZB-5ms, Optima-5MS, SLB-5.

Applications: Applications GC-MS avec système ion-trap, aromatiques polycycliques, hydrocarbures chlorés, phthalates, phénols, amines, organophosphates.

Ø int.	Film	θ limite °C	10 m	12 m	15 m	20 m	30 m	40 m	60 m
0,15 mm	0,15 µm	330/350				26096-2760			
0,18 mm	0,18 µm	330/350						26096-5800	
0,25 mm	0,10 µm	330/350							
	0,25 µm	330/350			26096-1300 26096-1301**		26096-1420 26096-1425* 26096-1421**		26096-1540
	0,50 µm	330/350					26096-2230 26096-2235*		
	1,00 µm	330/350					26096-2960		26096-3080
0,32 mm	0,25 µm	330/350	26098-4410		26096-1310		26096-1430		
	0,50 µm	330/350					26096-2240		
	1,00 µm	330/350					26096-2970		
	1,50 µm	330/350							
0,53 mm	1,50 µm	330/350					26096-3360		

^{*}Avec précolonne intégrée de 5 m / ** avec précolonne intégrée de 10 m.

Colonnes TG-5HT

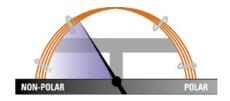

5 % phényl méthylpolysiloxane haute température

Phases similaires: Rxi-5HT, BP-5HT, VF-5HT, ZB-5HT.

Applications: Phénols, solvants résiduels, solvants, semi volatils,

pesticides, PCB, impuretés dans solvants.

Ø int.	Film	θ limite °C	10 m	15 m	30 m
0,25 mm	0,10 µm	380/400		26095-0350	
	0,25 µm	380/400		26095-1300	26095-1420
0,32 mm	0,10 µm	380/400		26095-0360	26095-0480
	0,25 µm	380/400			26095-1430
0.53 mm	0.15 um	380/400	26095-1640		26095-0620



Colonnes TG-35MS

35 % phényl méthylpolysiloxane - USP: G42

Phases similaires: Rtx-35, BP-35, HP-35, SPB-35, SPB-608.

Applications: Pesticides organochlorés, herbicides, produits pharmaceutiques, PCB, stérols, acides "Rosin", phthalate esters.

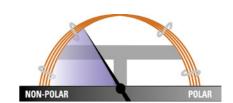
			TG-	35MS		TG-35MS AMINI	E
Ø int.	Film	θ limite °C	15 m	30 m	θ limite °C	15 m	30 m
0,25 mm	0,25 µm	300/320	26094-1300	26094-1420			
	0,50 µm	300/320		26094-2230	220		26092-2230
	1,00 µm	300/320			220		26092-2960
0,32 mm	0,25 µm	300/320		26094-1430	220		
	0,50 µm	300/320		26094-2240			
	1,00 µm	300/320			220		26092-2970
	1,50 µm	300/320			220		26092-3351
0,53 mm	0,50 µm	300/320	26094-2130				
	1,00 µm	300/320		26094-2980	220	26092-2860	26092-2980
	1,50 µm	300/320		26094-3360			

Colonnes TG-1301MS

6 % cyanopropylphényl méthylpolysiloxane

Phases similaires: Rtx-1301, DB-1301, BP-624, HP-1301, HP-624, SPB-1301, SPB-624, VP-1301, BF-624ms, CP-1301, CP-Select 624 CB. Applications: Alcools, volatils organiques, oxygénates, solvants résiduels.

Арриосио	110.7 110001	o, volutilo orga	inquoo, oxygonate	o, convanto recidado
Ø int.	Film	θ limite °C	30 m	60 m
0,25 mm	0,25 µm	260/280	26091-1420	26091-1540
	0,50 µm	260/280		
	1,00 µm	260/280	26091-2960	26091-3080
	1,40 µm	260/280		26091-3330
0,32 mm	0,25 µm	260/280	26091-1430	
	1,00 µm	260/280	26091-2970	
	1,50 µm	260/280	26091-3350	


26091-3390

26091-2980

26091-3960

26091-3410

26091-4080

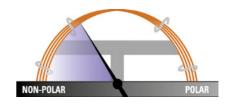
Colonnes TG-624

1,80 µm

3,00 µm

0,53 mm 1,00 µm

6 % cyanopropylphényl méthylpolysiloxane

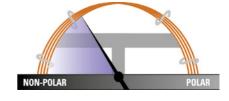

260/280

260/280

260/280

Phases similaires: DB-1301, DB-624, HP-1301, HP-624, SPB-1301, SPB-624, VF-1301, VF-624ms, CP-1301, CP-Select624 CB, Rtx-624, BP-624, ZB-624, Optima-1301, Optima-624, AT-624, 007-1301.

Applications: Solvants résiduels, composés organiques volatils (VOC), alcools, composés oxygénés.

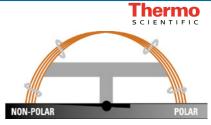


Ø int.	Film	θ limite °C	20 m	30 m	40 m	60 m	75 m	105 m
0,18 mm	1,00 µm	240	26085-4950		26085-4960			
0,25 mm	1,40 µm	240		26085-3320		26085-3330		
0,32 mm	1,80 µm	240		26085-3390		26085-3410		
0,53 mm	3,00 µm	240		26085-3960		26085-4080	26085-4900	26085-4090

Colonnes TG-624SilMS

6 % cyanopropylphényl méthylpolysiloxane haute température - USP : G43

Phases similaires: DB-624, VF-624ms, CP-Select 624 CB, ZB-624. Applications: Solvants résiduels, composés organiques volatils (VOC), alcools, composés oxygénés.


Ø int.	Film	θ limite °C	20 m	30 m	60 m
0,18 mm	1,00 µm	320	26059-4950		
0,25 mm	1,40 µm	320		26059-3320	26059-3330
0,32 mm	1,80 µm	320		26059-3390	26059-3410
0,53 mm	3,00 µm	320		26059-3960	26059-4080

Colonnes TG-VRX

Phases similaires: Rtx-VRX, DB-VRX.

Applications: Polluants organiques volatils, méthode EPA 8021.

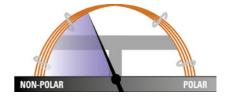
Ø int.	Film	θ limite °C	15 m	30 m	60 m	60 m	75 m	105 m
0,18 mm	1,00 µm	260	26081-4950		26081-4960			
0,25 mm	1,40 µm	260		26081-3320		26081-3330		
0,32 mm	1,80 µm	260		26081-3390		26081-3410		

Colonnes TG-VMS

Phases similaires: Rtx-VMS.

Applications: Polluants organiques volatils, méthode EPA 8260B.

Ø int.	Film	θ limite °C	20 m	30 m	60 m
0,18 mm	1,00 µm	260	26080-4950		
0,25 mm	1,40 µm	260		26080-3320	26080-3330
0,32 mm	1,80 µm	260		26080-3390	26080-3410


Colonnes TG-1701MS

14 % cyanopropylphényl méthylpolysiloxane - USP : G46

Phases similaires: Rtx-1701, DB-1701, HP-1701, SPB-1701, VF-1701,

CP-Sil 19 CB.

Applications: alcools, pesticides, composés oxygénés, PCB..

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,25 µm	260/280	•••	26090-1420	26090-1540
	0,50 µm	260/280		26090-2230	26090-2350
	1,00 µm	260/280		26090-2960	26090-3080
0,32 mm	0,25 µm	260/280	26090-1310	26090-1430	26090-1550
	0,50 µm	260/280	•••	26090-2240	•••
	1,00 µm	260/280		26090-2970	26090-3090
	1,50 µm	260/280	26090-0680		26090-0630
0,53 mm	0,25 µm	260/280		26090-1440	
	3,00 µm	260/280	26090-3840	26090-3960	26090-4080

Colonnes capillaires - Thermo Scientific - TraceGOLD

Colonnes TG-17MS

50 % phényl méthylpolysiloxane - USP : G3

Phases similaires: Rxi-17, DB-17, DB-608, VF-17ms, CP-Sil 24 CB. Applications: Pesticides et herbicides, acides "Rosin", phthalate esters,

tria	lvcérides.	ctórole
uu	IVUEHUES.	SICIUIS.

26089-3360

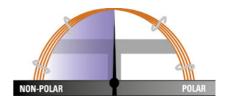
1,50 µm

50 % phényl méthylpolysiloxane haute température

300/320

Phases similaires: DB-17ms, VF-17ms, CP-Sil 24 CB, ZB-50, BPX-50. Applications: HAP, pesticides, herbicides, phthalate esters, triglycerides.

III	
NON-POLAR	POLAR

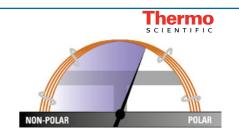

Ø int.	Film	θ limite °C	10 m	30 m
0,15 mm	0,15 µm	340/360	26072-2750	
0,18 mm	0,25 µm	340/360		26072-1420

Colonnes TG-225MS

50 % cyanopropylméthyl phénylméthylpolysiloxane - USP : G7

Phases similaires: Rtx-225, DB-225, HP-225, SPB-225. Applications: FAME, carbohydrates, stérols, arômes.

Ø int.	Film	θ limite °C	30 m	60 m
0,25 mm	0,25 µm	220/240	26083-1420	26083-1540
0,32 mm	0,25 µm	220/240	26083-1430	

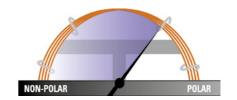

Colonnes TG-200MS

Trifluoropropyl méthylpolysiloxane - USP: G6

Phases similaires: Rtx-200MS, DB-200, DB-210.

Applications: Solvants, fluorocarbones, alcools, cétones, silanes, glycols.

Ø int.	Film	θ limite °C	20 m	30 m	60 m
0,15 mm	0,15 µm	320/340	26084-2760		
0,25 mm	0,25 µm	320/340		26084-1420	
	1,00 µm	320/340		26084-2960	
0,32 mm	0,20 µm	320/340			26084-1550
	0,25 µm	320/340		26084-1430	
	0,50 µm	320/340		26084-2240	
	1,00 µm	320/340		26084-2970	
0,53 mm	1,00 µm	320/340		26084-2980	



Colonnes TG-WaxMS

Polyéthylène glycol - USP: G16, G20

Phases similaires: DB-WAX, DB-WAXetr, HP-Wax, HP-Innowax, Supelcowax 10, CP-Wax 52 CB, Stabilwax, Rtx-Wax, BP20, ZB-Wax, Optima Wax, AT-Wax.

Applications: FAME, armes, huiles essentielles, solvants, isomères du xylène, méthode EPA 603 (acroléine, acrylonitrile).

Ø int.	Film	θ limite °C	10 m	15 m	20 m	25 m	30 m	40 m	60 m
0,10 mm	0,10 µm	240/260	26088-0200						
0,25 mm	0,25 µm	240/260		26088-1300			26088-1420		26088-1540
							26088-1421**		
	0,50 µm	240/260					26088-2230		26088-2350
0,32 mm	0,25 µm	240/260					26088-1430		26088-1550
							26088-1435*		
	0,50 µm	240/260		26088-2120			26088-2240		26088-2360
	1,00 µm	240/260					26088-2970		26088-3090
0,53 mm	0,25 µm	240/260					26088-1440		26088-1560
	0,50 µm	240/260		26088-2130			26088-2250		26088-2370
	1,00 µm	240/260		26088-2860			26088-2980		26088-3100
	1,50 µm	240/260					26088-3360		

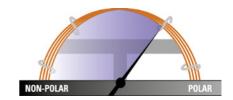
^{*}Avec précolonne intégrée de 5 m / ** Avec précolonne intégrée de 10 m.

Produits Liés

Flacons Sure-Stop / Bouchons AVCS :

Les flacons sont usinés avec une collerette ce qui permet une fermeture reproductible quel que soit l'utilisateur et un bouchon toujours bien positionné et droit. D'autre part, l'optimisation de la forme des bouchons permet d'éliminer la tombée du joint dans le flacon lors de la perforation par l'aiguille du passeur automatique.

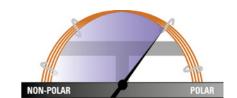
Flacons & Capsules - Thermo Chromacol



Colonnes TG-WaxMS A

Polyéthylène Glycol désactivé pour acides

Phases similaires: DB-FFAP, HP-FFAP, NUKOL, OV-351, CP-Wax 58 CB, FFAP, Stabilwax-DA, BP-21, Optima FFAP.


Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,25 µm	240/250	26087-1300	26087-1420	26087-1540
	0,50 µm	240/250		26087-2230	
0,32 mm	0,25 µm	240/250	26087-1310	26087-1430	
	0,50 µm	240/250		26087-2240	
	1,00 µm	240/250		26087-2970	
0,53 mm	0,25 µm	240/250		26087-1440	
	1,00 µm	240/250	26087-2860	26087-2980	

Colonnes TG-WaxMS B

Polyéthylène Glycol désactivé pour bases

Phases similaires: CAM, Carbowax Amine, CP Wax51, Stabilwax-DB.

Ø int.	Film	θ limite °C	30 m
0,25 mm	0,25 µm	200/220	26086-1420
	0,50 µm	200/220	26086-2230
0,32 mm	0,25 µm	200/220	26086-1430
0,53 mm	0,25 µm	200/220	
	1,00 µm	200/220	26086-2980

Colonnes spécifiques

Туре	Ø int.	Film	θ limite °C	30 m	40 m	50 m	60 m
PCB 8MS	0,25 mm	0,25 µm				26AJ148P	
TO DIOVIN	0,18 mm	0,18 µm	340		26066-4800		
TG-DIOXIN	0,25 mm	0,25 µm	340				26066-1540
DIOXIN 5MS	0,25 mm	0,10 µm		26AF047P			26AF059P
		0,25 µm					26AF154P

Colonnes TG-OCP I & TG-OCP II

Phases similaires: Rtx-CLPesticides / Rtx-CLPesticides2.

Applications: Méthodes EPA 8081, 608 et CPL- "Organochlorine Pesticides & Herbicides".

Туре	Ø int.	Film	θ limite °C	20 m	30 m
	0,18 mm	0,18 µm	340	26078-5780	
TG-OCP I	0,25 mm	0,25 µm	340		26078-1420
	0,32 mm	0,32 µm	340		26078-5760
		0,50 µm	340		26078-2240
	0,18 mm	0,14 µm	340	26077-5690	
TG-OCP II	0,25 mm	0,20 µm	340		26077-5720
	0,32 mm	0,25 µm	340		26077-1430

Colonnes TG-OPP I & TG-OPP II

Phases similaires: Rtx-OPPesticides / Rtx-OPPesticides2. Applications: Pesticides organochlorés. méthodes EPA 8141A

Туре	Ø int.	Film	θ limite °C	30 m
TG-OPP I	0,25 mm	0,25 µm	330	26076-1420
1G-OPP1	0,32 mm	0,50 µm	330	26076-2240
	0,25 mm	0,25 µm	330	26075-1420
TG-OPP II	0,32 mm	0,32 µm	330	26075-5760
	0,53 mm	0,50 µm	330	26075-2250

Colonnes TG-ALC I/II

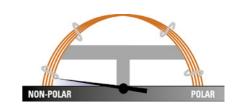
Phases similaires: Rtx-BAC Plus 1 / Rtx-BAC Plus 2.

Applications: Alccols dans le sang, γ-hydroxybutyrate (GHB), γ-butyrolactone (GBL).

Туре	Ø int.	Film	30 m
TG-ALC Plus I	0,32 mm	1,80 µm	26063-3390
	0,53 mm	3,00 µm	26063-3960
TG-ALC Plus II	0,32 mm	0,50 µm	26063-2240
	0,53 mm	1,00 µm	26063-2980

Analyse GC

Colonnes capillaires - Thermo Scientific - TraceGOLD



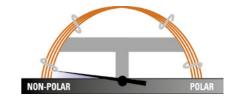
Colonnes TR-1

100 % diméthyl polysiloxane - USP: G1, G2, G38

Phases similaires: DB-1, DB-Petro, BP1, HP-1, Ultra-1, SPB-1, SPB-1 Sulfur, Petrocol DH, CP-Sil 5CB, RSL-150, RSL-160, ZB-1, CB-1, OV-1, PE-1, 007-1, SP-2100, SE-30, RH-1, CC-1.

Applications: Composés chlorés, aromatiques nitrés, analyses environnementales.

Ø int.	Film	θ limite °C	15 m	30 m	60 m	100 m
0,25 mm	0,10 µm	340/360	•••	260A047P		
	0,25 µm	340/360	260A130P	260A142P	260A154P	
	0,50 µm	340/360		260A223P		260A241P
	1,00 µm	340/360		260A296P	260A308P	
0,32 mm	0,25 µm	340/360	260A131P	260A143P		
	1,00 µm	340/360		260A297P		•••
	3,00 µm	300/320		260A395P		
	5,00 µm	280/300		260A469P		•••
0,53 mm	1,00 µm	340/360		260A298P		
	1,50 µm	300/320		260A336P		•••
	3,00 µm	300/320		260A396P		
	5,00 µm	280/300		260A470P		•••


Colonnes TR-1MS

100 % diméthyl polysiloxane - USP: G1, G2, G38

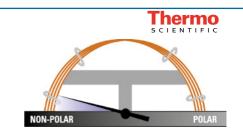
Phases similaires: DB-1, DB-Petro, BP1, HP-1, HP-1MS, Rtx-1, Ultra-1, SPB-1, SPB-1 Sulfur, Petrocol DH, CP-Sil 5CB, RSL-150, RSL-160, ZB-1, CB-1, OV-1, PE-1, 007-1(MS), SP-2100, SE-30, RH-1, CC-1, CP-Sil 5CB MS, VF-1ms.

Applications: Composés chlorés, aromatiques nitrés, analyses environnementales GC/MS.

Ø int.	Film	θ limite °C	30 m	60 m
0,25 mm	0,10 µm	340/360	260B047P	
	0,25 µm	340/360	260B142P	260B154P
0,32 mm	0,25 µm	340/360	260B143P	260B155P
	1,00 µm	340/360		260B309P

Produits Liés

Flacons certifiés MS - National Scientific : flacons prélavés et certifiés / MS Flacons & Capsules - Thermo National Scientific

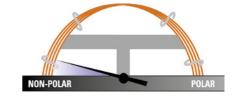


Colonnes TR-5

5 % phényl méthyl polysiloxane - USP : G27, G36

Phases similaires: DB-5, BP5, Rtx-5, HP-5, Ultra-2, PTE-5, SPB-5, MDN-5, CP-Sil 8CB, SPB-5, AT-5, ZB-5, 007-2(MPS-5), SE-52, SE-54.

Applications: Alcools, acides gras libres, aromatiques, parfums, pesticides de faible polarité.


Film	θ limite °C	7 m	15 m	30 m	60 m	100 m
0,25 µm	320/340		260E130P	260E142P	260E154P	
0,50 µm	320/340			260E223P		
0,25 µm	320/340	260E113P	260E131P	260E143P	260E155P	
0,50 µm	320/340			260E224P		260E242P
1,00 µm	320/340			260E297P		
0,50 µm	320/340			260E225P		
1,00 µm	320/340			260E298P		
1,50 µm	320/340			260E336P		
5,00 µm	280/300			260E470P		
	0,25 μm 0,50 μm 0,25 μm 0,50 μm 1,00 μm 1,00 μm 1,00 μm 1,00 μm	0,25 μm 320/340 0,50 μm 320/340 0,25 μm 320/340 0,50 μm 320/340 1,00 μm 320/340 1,00 μm 320/340 1,00 μm 320/340 1,50 μm 320/340	0,25 μm 320/340 0,50 μm 320/340 0,25 μm 320/340 260E113P 0,50 μm 320/340 1,00 μm 320/340 0,50 μm 320/340 1,00 μm 320/340 1,50 μm 320/340	0,25 μm 320/340 260E130P 0,50 μm 320/340 0,25 μm 320/340 260E113P 260E131P 0,50 μm 320/340 1,00 μm 320/340 0,50 μm 320/340 1,00 μm 320/340 1,50 μm 320/340	0,25 μm 320/340 260E130P 260E142P 0,50 μm 320/340 260E223P 0,25 μm 320/340 260E113P 260E131P 260E143P 0,50 μm 320/340 260E224P 1,00 μm 320/340 260E297P 0,50 μm 320/340 260E225P 1,00 μm 320/340 260E298P 1,50 μm 320/340 260E36P	0,25 μm 320/340 260E130P 260E142P 260E154P 0,50 μm 320/340 260E223P 0,25 μm 320/340 260E113P 260E143P 260E155P 0,50 μm 320/340 260E224P 1,00 μm 320/340 260E297P 0,50 μm 320/340 260E225P 1,00 μm 320/340 260E298P 1,50 μm 320/340 260E36P

Colonnes TR-5MS

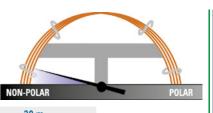
5 % phényl polysilphénylène siloxane - USP : G27, G36

Phases similaires: DB-5, DB-5MS,DB-5.625 XTI-5, BPX5, Rtx-5MS, Rtx-5, AT-5, AT-5MS, 007-5MS, CP-Sil 8CB, Ultra-2, HP-5, HP-5MS,SPB-5, MDN-5S, VF-5ms, RSL-200, CB-5, OV-5, PE-5, 007-2(MP-5), SE-52, SE-54, PTE-5, CC-5, RH-5ms, ZB-5.

Applications: Hydrocarbures, solvants, pesticides, herbicides, phénols, amines.

Ø int.	Film	θ limite °C	10 m	15 m	20 m	30 m	60 m
0,10 mm	0,10 µm	360/370	260F020P				
0,18 mm	0,18 µm	360/370			260F578P		
0,25 mm	0,10 µm	360/370		260F035P		260F047P	
	0,25 µm	360/370		260F130P		260F142P	260F154P
	0,50 µm	360/370				260F223P	
	1,00 µm	360/370				260F296P	260F308P
0,32 mm	0,25 µm	360/370				260F143P	
	0,50 µm	360/370				260F224P	
	1,00 µm	360/370		260F285P		260F297P	260F309P
0,53 mm	0,50 µm	360/370				260F225P	
	1,00 µm	360/370				260F298P	
	1,50 µm	360/370				260F336P	
	3,00 µm	350/360				260F396P	

Colonnes TR-5HT


5 % phényl polycarborane siloxane - USP : G27, G36

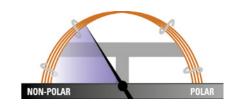
Phases similaires: DB-5, BP5, Rtx-5, HP-5, Ultra-2, PTE-5, SPB-5, MDN-5, CP-Siland Strategies and Strategies are also below the strategies of the strategies and the strategies are strategies are strategies and the strategies are strategies are strategies and the strategies are strategies are strategies and the strategies are strategies are strategies and the strategies are strategies are strategies are strategies are strategies and the strategies are strategies are strategies and the strategies are strategies are strategies and the strategies are strategies and the strategies are strategies are strategies and the strategies are strategies

8CB, SPB-5, AT-5, ZB-5, 007-2(MPS-5), SE-52, SE-54.

Applications: Hydrocarbures, solvants, pesticides, herbicides, phénols, amines.

Ø int.	Film	θ limite °C	12 m	15 m	30 m
0,25 mm	0,10 µm	380/400	•••	260H035P	260H047P
	0,25 µm	380/400		•••	260H142P
0,32 mm	0,10 µm	380/400	260H030P		

Colonnes TR-35MS


35 % phényl polysilphényène-siloxane - USP : G42

 ${\color{red}\textbf{Phases similaires}: DB-35, DB-35MS, HP-35, HP-35MS, MDN-35, Rtx-35, }$

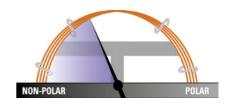
SPB-35, BPX35.

Applications: Pesticides, herbicides, drogues, HAP, produits

pharmaceutiques.

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,22 mm	0,25 µm	330/360			
0,25 mm	0,25 µm	330/360	260C130P	260C142P	260C154P
0,32 mm	0,25 µm	330/360		260C143P	
0,53 mm	1,00 µm	330/360	260C286P	260C298P	•••

Colonnes TR-1701


14 % cyanopropylphényl polysiloxane - USP : G46

Phases similaires: DB-1701, Rtx-1701, HP-1701, BP10, OV-1701, 007-

1701, CP-Sil 19 CB.

Applications: Pesticides, PCB, PAH, acides organiques, drogues,

stéroïdes, méthodes EPA 608, 8081.

Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,25 µm	280/300		260Q142P	260Q154P
0,32 mm	0,25 µm	280/300	260Q131P	260Q143P	260Q155P
	1,00 µm	280/300		•••	260Q309P
0,53 mm	1,00 µm	280/300		260Q298P	

Colonnes TR-50 MS

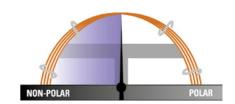
50 % phényl polysilphénylène-siloxane - USP : G3

Phases similaires: OV-17, SP-2250, DB-17, DB-17ms, DB-17ht, BPX50, Rtx-50, SPB-50, HP-50+, HP-17, AT50, RSL-300, PE-17, CC-17, 007-17,

(MPS-50), SPB-17, ZB-50.

Applications: herbicides, drogues, méthodes EPA 604, 608, 8060, 8081, produits pharmaceutiques.

Film	θ limite °C	60 m
0,25 µm	360/370	260R142P
0,25 µm	360/370	260R143P
0,50 µm	360/370	260R225P
	0,25 μm 0,25 μm	0,25 μm 360/370 0,25 μm 360/370


NON-POLAR POLAR

Colonnes TR-225

50 % cyanopropylphényl polysiloxane - USP: G7

Phases similaires: DB-225, HP-225, RTX-225, BP225. Applications: FAME, carbohydrates, stérols neutres.

Ø int.	Film	θ limite °C	30 m
0,25 mm	0,25 µm	230/250	260Y142P
0,32 mm	0,25 µm	230/250	•••

Thermo scientific

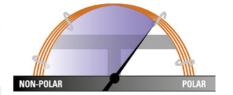
Colonnes TR-WAX

50 % cyanopropylphényl polysiloxane - USP: G16, G20

Phases similaires: DB-Wax, BP20, Rtx-Wax, Stabilwax, HP-20M, HP-Wax, HP-INNOWax, SUPELCOWAX 10, AT-Wax, Nukol, CP Wax52CB, SUPEROX II, Carbowax, PE-WAX, 7R-Wax

Applications: Esters, alcools, cétones, glycols, isomères aromatiques.

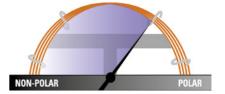
Ø int.	Film	θ limite °C	15 m	30 m	60 m
0,25 mm	0,25 µm	260/280		260W142P	260W154P
	0,50 µm	260/280		260W223P	
	1,00 µm	260/280		260W296P	
0,32 mm	0,25 µm	260/280	260W131P	260W143P	260W155P
	0,50 µm	260/280		260W224P	
	1,00 µm	260/280		260W297P	260W309P
0,53 mm	0,50 µm	260/280		260W225P	
	1,00 µm	260/280	260W286P	260W298P	260W310P



Polyéthylène glycol pour MS - USP : G16

Phases similaires: DB-Wax, Rtx-Wax, Stabilwax, HP-20M, BP20, HP-Wax, HP-INNOWax, SUPELCOWAX 10, AT-Wax, Nukol, CP Wax 52CB, ZB-Wax.

Applications: Hydrocarbures aromatiques, additifs alimentaires, huiles essentielles, alcools, esters, aldéhydes, cétones.


Ø int.	Film	θ limite °C	30 m	60 m
0,25 mm	0,25 µm	260/280	260X142P	260X154P
	0,50 µm	260/280	260X223P	•••
	1,00 µm	260/280	260X296P	
0,32 mm	0,25 µm	260/280	260X143P	260X155P
	0,50 µm	260/280	260X224P	

Colonnes TR-FFAP

Polyéthylène Glycol modifié TPA - USP: G25, G35

Ø int.	Film	θ limite °C	15 m	30 m	50 m	60 m
0,25 mm	0,25 µm	240/250	260N130P	260N142P		260N154P
0,32 mm	0,25 µm	240/250		260N143P		
	0,50 µm	240/250			260N230P	
0,53 mm	0,50 µm	240/250		260N225P		
	1,00 µm	240/250		260N298P		
	1,00 µm	260/280		260X298P	260X298P	260X309P

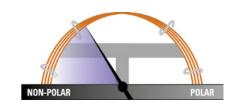
Colonnes TR-SIMDIST

100 % diméthyl polysiloxane

Phases similaires: DB-HT Sim Dist, DB-2887, BPX1, Rtx-2887, HP-1, Petrocol 2887, Petrocol EX2887.

Applications: Hydrocarbures hauts poids moléculaires, distillation simulée, méthodes ASTM D2887, D6532.

Ø int.	Film	θ limite °C	10 m
0,53 mm	0,90 µm	400	
	2,65 µm	370	260S348P
	1,00 µm	260/280	260X298P


Colonnes TR-V1

6% cyanopropylphényl polysiloxane - USP: G43

Phases similaires: DB-624,BPX volatiles, Rtx volatiles, VOCOL 56, OV-624, AT-624, HP-VOC, CP-Select 624CB, 007-624, ZM-624.

Applications: Volatils organiques, alcools, méthodes EPA 502,2, 608 et 624.

Ø int.	Film	θ limite °C	20m	30 m	60 m
0,18 mm	1,00 µm	280/300	260V495P		
0,25 mm	1,40 µm	280/300		260V332P	260V333P
0,32 mm	1,80 µm	280/300		260V339P	260V341P
0,53 mm	3,00 µm	280/300		260V396P	

Colonnes TR-FAME

70 % cyanopropyl polysilphénylènesiloxane

Phases similaires: DB-23, BPX70, Rtx-2330, SP-2330, CP-Sil 88,

SP-2380, HP-23, VF-23ms, 007-23, AT-Silar, PE-23. Applications : FAME, isomères cis/trans FAME.

Ø int.	Film	θ limite °C	10 m	25 m	30 m	50 m	60 m	100 m	120 m
0,10 mm	0,20 µm	250/260	260M096P						
0,22 mm	0,25 µm	250/260		260M135P	260M141P	260M147P	260M153P		
0,25 mm	0,20 µm	250/260						260M238P	
	0,25 µm	250/260			260M142P		260M154P		260M166L
0,32 mm	0,25 µm	250/260		260M137P	260M143P	260M149P	260M155P		

Colonnes TR pour méthodes EPA 524, 525, 527, 8095, 8270

Applications: Composés organiques volatils (VOC), pesticides, retardateurs de flamme, explosifs.

Туре	Applications	Ø int.	Film	12 m	20 m	30 m
TR-524	Analyse de l'eau potable : Méthode EPA 524	0,18 mm	1,00 µm		26RV495P	
TR-525	Analyse de l'eau potable : Méthode EPA 525	0,25 mm	0,25 µm			26RX142P
TR-8095	Analyse des déchets : Méthode EPA 8270	0,32 mm	0,25 µm	260P123P		
TR-8270	Analyse des explosifs à haute température : Méthode EPA 8095	0,25 mm	0,50 µm			26RF223P

Colonnes TR-BioDiesel

Туре	Applications	Ø int.	Film	10 m	20 m
BIODIESEL (F)	FAME dans biocarburants (méthode 14103)	0,25 mm	0,25 µm		26AX142P
BIODIESEL (G)	Glycéride total (méthode 14105)	0,32 mm	0,10 µm	26AF024P	
BIODIESEL (G) ASTM	Glycéride total (méthode D-6584)	0,32 mm	0,10 µm	26RF024P	
BIODIESEL (M)	Méthanol résiduel dans Biocarburants (méthode 14110)	0,32 mm	3,00 µm		26AA395P

Colonnes TR-DOA5MS &TR-DOA35MS

Applications: Drogues (amphétamines, codéine, morphine, carboxy-THC).

Туре	Applications	Ø int. Film	15 m
TR-DOA35MS	Carboxy-THC	0,20 mm 0,33 µm	26AC497P
TR-DOA5MS	amphétamines, codéine, morphine	0,25 mm 0,25 μm	26AF130P

Colonnes TR-PESTICIDE

Applications: pesticides organophosphorés, organochlorés, pyréthrines et herbicides.

Туре	Ø int. Film	30 m
TR-PESTICIDE	0,25 mm 0,25 μm	26RF142F*
TR-PESTICIDE II	0,25 mm 0,25 μm	26RD142F*
TR-PESTICIDE III	0,25 mm 0,25 μm	26RC142F*
TR-PESTICIDE IV	0,25 mm 0,25 μm	26RC142P

^{*}colonne de garde intégrée de 5 m.

Colonnes UltraFast™

Applications: Chimie, pétrochimie, environnement, saveurs et parfums.

Gamme de colonnes courtes, de faibles diamètres pour les instruments UltraFast GC Trace Thermo Scientific

Туре	Applications	Ø int.	Film	5 m	10 m
UEO 4	Général	0,10 mm	0,10 µm	UFMC00001010401	
UFC-1	ISO 9377-2		0,25 µm	UFMC00001070404	
UFC-5	Général	0,10 mm	0,10 µm	UFMC00300000000	
	Général		0,40 µm	UFMC00200000000	UFMC00002010006
UFC-WAX	FAME et huiles essentielles	0,10 mm	0,10 µm	UFMC00001010501	
UFC-WAX	Général		0,20 µm	UFMC00001010503	
UFC-264	Volatils	0,10 mm	0,50 µm	UFMC00002010207	
UFC-M1	Général	0,32 mm	0,25 µm	UFMC00001070904	

Produits Liés

Colonnes Trace PLOT-BOND

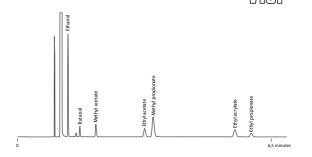
Applications: Chimie, pétrochimie, environnement, saveurs et parfums.

- Colonnes à fort greffage pour empêcher la perte de particules, elles peuvent ainsi être utilisées avec des vannes de commutation et tous les détecteurs.
- Ces colonnes peuvent être régénérées après adsorption d'eau.
- Chaque colonne est testée pour contrôler l'épaisseur de film avec le 1,3-butadiène, la sélectivité avec le propadiène et le méthyl acétylène, la résolution avec le trans-2-butène et le 1-butène, et l'efficacité avec le 1,3-butadiène.

		Ø int.	Film	15 m	30 m	50 m
TraceDI OT TC POND Aluming No SO	C1-C5 hydrocarbons Unsaturated hydrocarbon	0,32 mm	5,00 µm		26001-6020	26001-6050
TracePLOT TG-BOND Alumina Na ₂ SO ₄	isomers	0,53 mm	10,00 µm		26001-6080	26001-6110
TracePLOT TG-BOND Alumina KCI	C1-C5 hydrocarbons Unsaturated hydrocarbon	0,32 mm	5,00 µm		26002-6020	26002-6050
Traceptor To-Bond Alumina RCI	isomers	0,53 mm	10,00 µm		26002-6080	26002-6110
TracePLOT TG-BOND Msieve 5A	Permanent gases	0,32 mm	30,00 µm	26003-6010	26003-6040	
TracePLOT TG-BOND Misteve 5A	Refinery or natural gases	0,53 mm	50,00µm	26003-6070	26003-6100	26003-1630
TG-BOND Q	Isomères C1 à C3, alcanes jusqu'à C12 Séparation CO ₂ , méthane,		10,00 µm	26004-6000	26004-6030	
Non-polaire 100 % divinylbenzene	O ₂ , N ₂ , CO Composés oxygénés et solvants		20,00 µm	26004-6060	26004-6090	
TG-BOND Q+	Ethane, Éthylène,	0,32 mm	10,00 µm	26005-6000	26005-6030	
Polarité intermédiaire : divinylbenzene "homopolymère" poreux	Acétylène	0,53 mm	20,00 µm	26005-6060	26005-6090	
TG-BOND S	Composés polaires	0,32 mm	10,00 µm	26006-6000	26006-6030	
Polarité moyenne : divinylbenzene 4 vinylpyridine	et non polaires	0,53 mm	20,00 µm	26006-6060	26006-6090	
TG-BOND U	Composés polaires et non	0,32 mm	10,00 µm	26007-6000	26007-6030	
Polaire : vinylbenzèneéthylèneglycol/diméthylacrylate	polaires	0,53 mm	20,00 µm	26007-6060	26007-6090	

Pièges à particules Trace PLOT pour la protection du détecteur

Ø int.	2,5 m
0,32 mm	60180-860
0,53 mm	60180-861



Colonnes VB-Fluoro

100 % Fluorosilicone bonded

Applications: Cétones, aldéhydes, explosifs, HAP, silanes, CFC, composés insaturés.

Ø int.	Film	θ limite °C	30 m
0,25 mm	0,25 µm	-60 à 325/350	CFS-N03025-025
0,53 mm	1,00 µm	-60 à 280/300	CFS-N03053-100

Colonnes VB-1

100 % diméthylpolysiloxane

Phases similaires: DB-1, DB-1ms, HP-1, HP-1ms, Rtx-1, Rtx-1MS, SPB-1, MDN-1, BP-1,CP-Sil5CB, 007-1,OV-1, SE-30,AT-1, ZB-1. Applications: Amines, arômes et parfums, hydrocarbures, pesticides, PCB, phéromones, composés soufrés.

Ø int.	Film	θ limite °C	10 m	20 m	30 m	60 m
0,10 mm	0,10 µm	-60 à 360/370	CFS-A01010-010B		•••	
	0,20 µm	-60 à 360/370	CFS-A01010-020B			
0,18 mm	0,10 µm	-60 à 360/370	CFS-A01018-018B	CFS-A02018-010B		
	0,18 µm	-60 à 360/370	CFS-A01018-018B	CFS-A02018-018B		
0,25 mm	0,25 µm	-60 à 360/370			CFS-A03032-025B	
0,32 mm	0,25 µm	-60 à 360/370			CFS-A03032-025B	CFS-A06032-025B
	0,50 µm	-60 à 360/370				CFS-A06032-050B
0,53 mm	0,50 µm	-60 à 360/370	•••		CFS-A03053-050B	
	1,00 µm	-60 à 340/360			CFS-A03053-100B	

20 m

Colonnes VB-5

5 % phényl - 95 % diméthylpolysiloxane

Film

Phases similaires: DB-5, DB-5ms, HP-5, HP-5ms, rtx-5, Rtx-5ms, Rtx-5silMS, SPB-5, BP-5, OV-5,ZB-5.

Applications: Drogues, herbicides, hydrocarbures, PCB, pesticides, phénols, semi-volatils, composés soufrés.

w int.	FIIIII	10 m	15 m	20 M	30 m	40 M	00 m
0,10 mm	0,10 µm	CFS-B01010-010B		CFS-B02010-010B			
	0,20 µm	CFS-B01010-020B		CFS-B02010-020B			
0,18 mm	0,18 µm	CFS-B01018-018B		CFS-B02018-018B	CFS-B03018-018B	CFS-B04018-018B	
	0,40 µm	CFS-B01018-040B		CFS-B02018-040B	CFS-B03018-040B	CFS-B04018-040B	
0,25 mm	0,10 µm		CFS-B01525-010B		CFS-B03025-010B		CFS-B06025-010B
	0,25 µm		CFS-B01525-025B		CFS-B03025-025B		CFS-B06025-025B
	0,50 µm		CFS-B01525-050B		CFS-B03025-050B		CFS-B06025-050B
	1,00 µm		CFS-B01525-100B		CFS-B03025-100B		CFS-B06025-100B
0,32 mm	0,10 µm		CFS-B01532-010B		CFS-B03032-010B		CFS-B06032-010B
-	0,25 µm		CFS-B01532-025B		CFS-B03032-025B		CFS-B06032-025B
	0,50 µm		CFS-B01532-050B		CFS-B03032-050B		CFS-B06032-050B
	1,00 µm		CFS-B01532-100B		CFS-B03032-100B		CFS-B06032-100B
	2,00 µm		CFS-B01532-200B		CFS-B03032-200B		CFS-B06032-200B
	3,00 µm		CFS-B01532-300B		CFS-B03032-300B		CFS-B06032-300B
	5,00 µm		CFS-B01532-500B		CFS-B03032-500B		CFS-B06032-500B
0,53 mm	0,50 µm		CFS-B01553-050B		CFS-B03053-050B		
	1,00 µm		CFS-B01553-100B		CFS-B03053-100B		CFS-B06053-100B
	1,50 µm		CFS-B01553-150B		CFS-B03053-150B		CFS-B06053-150B
	2,00 µm		CFS-B01553-200B				CFS-B06053-200B
	2,65 µm		CFS-B01553-265B		CFS-B03053-265B		CFS-B06053-265B
	3,00 µm		CFS-B01553-300B		CFS-B03053-300B		CFS-B06053-300B
	5,00 µm		CFS-B01553-500B		CFS-B03053-500B		CFS-B06053-500B

Colonnes VB35

35 % phényl méthylpolysiloxane

Colonnes VB50/608

50 % phényl méthylpolysiloxane

Liste complète sur demande.

Colonnes VB-624

6 % cyanopropylphényl méthylpolysiloxane

Colonnes VB-1701

14 % Cyanopropylphényl méthylpolysiloxane

Colonnes VB-Wax

100 % polyéthylene Glycol (PEG)

Phases similaires: DBWAX, HP-WAX, HP-Innowax, Stabilwax, Rtx-WAX, SUPELCOWAX, BP-20, CP-WAX52CB, AT-WAX, ZB-WAX. Applications: Alcools, aldéhydes, arômes et parfums, acides organiques, solvants.

Ø int.	Film	θ limite °C	10 m	30 m	60 m
0,10 mm	0,10 µm	-20 à 250/260	CFS-G01010-010A		
	0,20 µm	-20 à 250/260	CFS-G01010-020A		
0,18 mm	0,18 µm	-20 à 250/260	CFS-G01018-018A		
0,25 mm	0,25 µm	-20 à 250/260		CFS-G03025-025A	CFS-G06025-025A
0,32 mm	0,25 µm	-20 à 250/260		CFS-G03032-025A	CFS-G06032-025A
0,53 mm	1,00 µm	-20 à 250/260		CFS-G03053-100A	

Colonnes capillaires ValcoPLOT

De nombreuses colonnes ValcoPLOT sont disponibles.

Pour obtenir les références, merci de nous consulter en précisant la phase (Alumina, Molesieve 5A, Hayesep A, B, C, D, N, P, Q et S) et les dimensions souhaitées.

Colonnes GC remplies personnalisées

Nous pouvons vous fournir des colonnes remplies avec une très grande variété de supports et de phases et donc une multitude de combinaisons possibles.

Les colonnes UptiPacked répondent à tous vos besoins et sont fabriquées à façon rapidement.

Chaque colonne est livrée avec un certificat d'identification.

Pour commander votre colonne, merci de nous indiquer ses différentes caractéristiques :

Colonne Inox

Le tube inox utilisé, de haute qualité, est dédié aux analyses GC. Les colonnes sont livrées avec des raccords Swagelok en laiton.

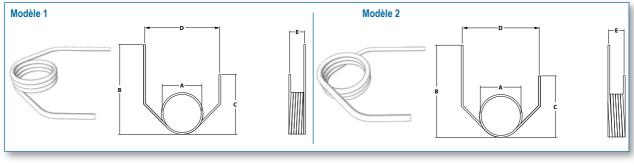
- Longueur de la colonne
- Diamètre interne et externe
- Phase, taux d'imprégnation
- Support (type, granulométrie)

Option: Conditionnement, traitement spécifique, raccords spécifiques, ...

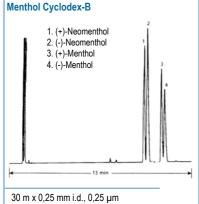
Colonne Verre

Le verre utilisé pour ces colonnes est désactivé afin de limiter les interférences.

- Longueur de la colonne
- Diamètre interne et externe
- Phase, taux d'imprégnation
- Support (type, granulométrie)
- Appareillage et configuration ou schéma complété avec les différentes cotes (A, B, C, D, E)



Autre matériau disponible : Cuivre, Aluminium, Nickel et PTFE


Supports imprégnés

Les supports imprégnés sont aussi disponibles par 20 grammes ou plus et comme pour les colonnes remplies, veuillez nous indiquer ces caractéristiques :

- Phase, taux d'imprégnation
- Support (type, granulométrie)

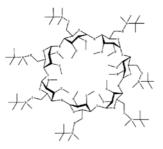
Agilent Technologies

30 m x 0,25 mm i.d., 0,25 μm Ref. : 112-2532 Carrier : Hydrogen, 55 cm/sec Four : 105 °C isothermal

Injecteur : Split ratio 1 : 100, 250 °C 1 μ L of

1 μg/μL each chloroform

Detecteur: FID 300 °C Nitrogen makeup gas at


30 mL/min

Phases similaires Cyclodex $\beta^{\text{-TM}}$:

LIPODEX C, Rt- β DEXm, β -DEXm, β -DEX 110, β -DEX 120

Attention!

Ces phases ne sont pas complètement greffées. Elles ne peuvent donc pas être rincées. Il est conseillé d'utiliser une colonne de garde (1 mètre de tube silice fondue désactivée) pour protéger la colonne.

Heptakis (2,3-di-O-methyl-6-O-t-butyl dimethylsilyl)-β-cyclodextrine

Phases similaires Cyclosil-B:

LIPODEX C, Rt- β DEXm, β -DEX 110, β -DEX 120

Cyclodex β^{-TM}

Phase 10,5% β-cyclodextrine perméthylée sur DB™-1701

- Excellente symétrie de pics
- Séparations chirales sans dérivatisation chirale spécifique

Ces colonnes donnent de bons résultats sur les drogues et les composés olfactifs, en particulier :

- Barbiturates
- Ethosuximides
- Menthols
- α-pinène
- Aromatiques

Ø int.	Film	Gamme θ °C	30 m	60 m
0,25 mm	0,25 µm	50 à 230/250	112-2532	112-2562
0,32 mm	0,25 µm	50 à 230/250	113-2532	

Colonne cages 5' & modules LTM: nous interroger.

Cyclosil-B

Phase 30 % heptakis (2,3-di-O-methyl-6-O-t-butyl dimethylsilyl)-β-cyclodextrine sur DB-1701. Cette colonne permet des séparations chirales sans dérivatisation. Elle donne de très bons résultats avec de nombreuses molécules, en particulier :

- γ-lactones
- 2-Butyl acétate
- Méthylcyclopentanone
- Rosemary oil,...

Ø int.	Film	Gamme θ °C	30 m
0,25 mm	0,25 µm	35 à 260/280	112-6632
0,32 mm	0,25 μm	35 à 260/280	113-6632

Colonne cages 5' & modules LTM: nous interroger.

Analyse GC - Chirale Colonnes capillaires Chirales - Agilent

Phases similaires Cyclosil- β :

LIPODEX C, Rt-β DEXm, β-DEX 110, β-DEX 120

HP-Chiral β

- Béta cyclodextrine dans la phase (35%-phényl)-méthylpolysiloxane
- Séparations chirales sans dérivatisation chirale spécifique
- Disponible en deux concentrations de bêta cyclodextrine : 10% et 20%
- La colonne à 20% de bêta cyclodextrine est le meilleur choix pour le criblage initial

HP-Chiral 10β

Ø int.	Film	Gamme θ °C	30 m
0,25 mm	0,25 µm	30 à 240/250	19091G-B133

Colonne cages 5' & modules LTM: nous interroger.

HP-Chiral 20ß

Ø int.	Film	Gamme θ °C	30 m
0,25 mm	0,25 µm	30 à 240/250	19091G-B233
0,32 mm	0,25 µm	30 à 240/250	19091G-B213

Colonne cages 5' & modules LTM: nous interroger.

CP-Cyclodextrin-β-2,3,6-M-19

Ø int.	Film	Gamme θ °C	25 m	50 m
0,25 mm	0,25 µm	225/250	CP7500	
0,32 mm	0,25 µm	225/250		CP7501

Colonne cages 5' & modules LTM: nous interroger.

CP-Chirasil Val

Ø int.	Film	Gamme θ °C	25 m
0,25 mm	0,08 µm	200/200	CP7494
0,25 mm	0,12 µm	200/200	CP7495

Colonne cages 5' & modules LTM: nous interroger.

CP-Chirasil-Dex CB

Ø int.	Film	Gamme θ °C	25 m
0,25 mm	0,25 μm	200/200	CP7502
0,32 mm	0,25 µm	200/200	CP7503

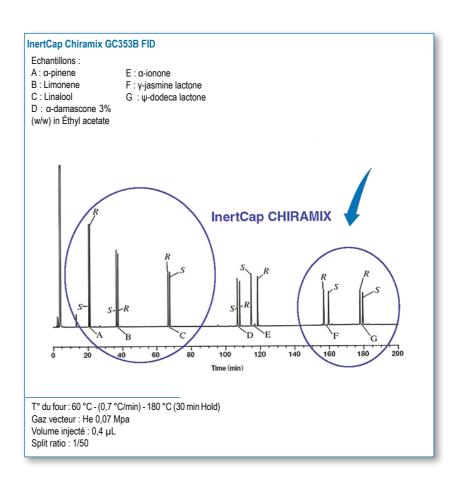
Colonne cages 5' & modules LTM: nous interroger.

CYDEX-B

Cyclodextrines perméthylées (Enantiomères)

Ø int.	Film	Gamme θ °C	25 m	50 m
0,22 mm	0,25 µm	30 à 220/240	054900	054901
0,32 mm	0,25 µm	31 à 220/240	054902	

Colonne cages 5' & modules LTM: nous interroger.


G 6L Sciences

Chiramix[™]

(Mélanges de cyclodextrines)

- Meilleur "premier choix" de colonne capillaire GC chirale pour la séparation d'énantiomères
- Colonne de qualité supérieure et de haute résolution
- Faible effet bleeding
- Excellente symétrie de pic

Ø int.	Film	Gamme θ °C	25 m
0,25 mm	0,25 μm		1010-69142

Les colonnes réalisées sur Rtx-1701 montrent une robustesse supérieure aux autres cyclodextrines. Sept types de cyclodextrines modifiées ont été développés, permettant de séparer plus d'une centaines de composés chiraux.

Rt-βDEXm™

(bêta cyclodextrine perméthylée dans une phase 14 % cyanopropylphényl / 86 % diméthyl polysiloxane). Usage général.

Ø int.	Film	Gamme θ °C	25 m
0,25 mm	0,25 µm	40 à 230	13100
0,32 mm	0,25 µm	40 à 230	13101

Rt-βDEXse™

(2,3-di-O-éthyl-6-O-tert-butyl diméthylsilyl bêta cyclodextrine dans une phase 14 % cyanopropylphényl/ 86 % diméthyl polysiloxane). Similaire à Rt-βDEXsm mais meilleure résolution pour limonène, linalyl acétate, éthyl-2-méthylbutyrate, 2,3-butanediol et styrène oxydes.

Ø int.	Film	Gamme θ °C	25 m
0,25 mm	0,25 µm	40 à 230	13107
0,32 mm	0,25 µm	40 à 230	13106

Rt-βDEXsa™

(2,3-di-acétoxy-6-O-tert-butyl diméthylsilyl bêta cyclodextrine dans une phase 14 % cyanopropylphényl/ 86 % diméthyl polysiloxane). Esters, lactones, aromes de fruits.

Ø int.	Film	Gamme θ °C	25 m
0,25 mm	0,25 µm	40 à 230	13109
0.32 mm	0.25 um	40 à 230	13108

Rt-yDEXsa™

(2,3-di-acétoxy-6-O-tert-butyl diméthylsilyl gamma cyclodextrine dans une phase 14 % cyanopropylphényl/ 86 % diméthyl polysiloxane). Analyses de grosses molécules organiques, d'aromatiques dans les jus de fruits.

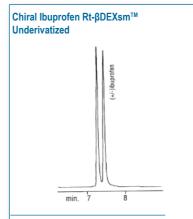
Ø int.	Film	Gamme θ °C	25 m
0,25 mm	0,25 µm	40 à 230	13113
0,32 mm	0,25 µm	40 à 230	13112

Rt-βDEXsm™

(2,3-di-O-méthyl-6-O-tert-butyl diméthylsilyl bêta cyclodextrine dans une phase 14 % cyanopropylphényl/ 86 % diméthyl polysiloxane). Excellente colonne pour toutes applications, en particulier huiles essentielles.

Ø int.	Film	Gamme θ °C	25 m
0,25 mm	0,25 µm	40 à 230	13105
0,32 mm	0,25 µm	40 à 230	13104

Rt-βDEXsp™


(2,3-di-O-propyl-6-O-tert-butyl diméthylsilyl bêta cyclodextrine dans une phase 14 % cyanopropylphényl/ 86 % diméthyl polysiloxane). Souvent utilisée en conjonction avec Rt-βDEXsm pour séparations complexes.

Ø int.	Film	Gamme θ °C	25 m
0,25 mm	0,25 µm	40 à 230	13111
0,32 mm	0,25 µm	40 à 230	13110

Rt-BDEXcst™

(cyclodextrine propriétaire dans une phase 14 % cyanopropylphényl/ 86 % diméthyl polysiloxane). Développée pour analyses de parfums et de pharmaceutiques.

Ø int.	Film	Gamme θ °C	25 m
0,25 mm	0,25 µm	40 à 230	13103
0,32 mm	0,25 µm	40 à 230	13102

Rt-βDEXsm™ On column injection

30 m, 0,32 mm i.d., 0,25 µm

Concentration: 125 ng each enantiomer Oven t°.: 175 °C to 200 °C @ 2 °C/min

Inj./det. t°: 200°C/230°C Carrier gas: Helium Linear velocity: 60 cm/sec. Detection: GC-FID Split ratio: 13:1 using cup splitter sleeve

Technical Tip

La sélectivité chirale est sensiblement améliorée lorsque l'analyse se fait à basse température.

Pour cela il convient de :

- · Augmenter la vitesse linéaire dans la colonne (80 cm/sec) en utilisant l'hydrogène comme
- Réduire le gradient de température (1-2 °C min)
- Ne pas dépasser une quantité de 50 mg par

